public class DecisionTreeModel extends Object implements scala.Serializable, Saveable
| Modifier and Type | Class and Description | 
|---|---|
| static class  | DecisionTreeModel.SaveLoadV1_0$ | 
| Constructor and Description | 
|---|
| DecisionTreeModel(Node topNode,
                 scala.Enumeration.Value algo) | 
| Modifier and Type | Method and Description | 
|---|---|
| scala.Enumeration.Value | algo() | 
| int | depth()Get depth of tree. | 
| static DecisionTreeModel | load(SparkContext sc,
    String path) | 
| int | numNodes()Get number of nodes in tree, including leaf nodes. | 
| JavaRDD<Double> | predict(JavaRDD<Vector> features)Predict values for the given data set using the model trained. | 
| RDD<Object> | predict(RDD<Vector> features)Predict values for the given data set using the model trained. | 
| double | predict(Vector features)Predict values for a single data point using the model trained. | 
| void | save(SparkContext sc,
    String path)Save this model to the given path. | 
| String | toDebugString()Print the full model to a string. | 
| Node | topNode() | 
| String | toString()Print a summary of the model. | 
public DecisionTreeModel(Node topNode, scala.Enumeration.Value algo)
public static DecisionTreeModel load(SparkContext sc, String path)
sc - Spark context used for loading model files.path - Path specifying the directory to which the model was saved.public Node topNode()
public scala.Enumeration.Value algo()
public double predict(Vector features)
features - array representing a single data pointpublic RDD<Object> predict(RDD<Vector> features)
features - RDD representing data points to be predictedpublic JavaRDD<Double> predict(JavaRDD<Vector> features)
features - JavaRDD representing data points to be predictedpublic int numNodes()
public int depth()
public String toString()
toString in class Objectpublic String toDebugString()
public void save(SparkContext sc, String path)
SaveableThis saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
 The model may be loaded using Loader.load.