
FFI Helper for Guile

Matt Wette
February 2018
With NYACC Version 0.84.1

Introduction

The acronym FFI stands for “Foreign Function Interface”. It refers to the Guile facility for
binding functions and variables from C source libraries into Guile programs. This distribu-
tion provides utilities for generating a loadable Guile module from a set of C declarations
and associated libraries. The C declarations can, and conventionally do, come from naming
a set of C include files. The nominal method for use is to write a ffi-module specification in
a file which includes a define-ffi-module declaration, and then use the command guild

compile-ffi to produce an associated file of Guile Scheme code.

$ guild compile-ffi ffi/cairo.ffi

wrote ‘ffi/cairo.scm’

The FH does not generate C code. The hooks to access functions in the Cairo library are
provided in 100% Guile Scheme via (system foreign).

The compiler for the FFI Helper (FH) is based on the C parser and utilities which are
included in the NYACC (https://www.nongnu.org/nyacc) package. Development for
the FH is currently being performed in the c99dev branch of the associated git repository.
Within the NYACC distribution, the relevant modules can be found under the directory
examples/.

Use of the FFI-helper module depends on the scheme-bytestructure package available
from https://github.com/TaylanUB/scheme-bytestructures. Releases are available at
https://github.com/TaylanUB/scheme-bytestructures/releases.

At runtime, after the FFI Helper has been used to create Scheme code, the modules
(system ffi-help-rt) and (bytestructures guile) are required. No other code from
the NYACC distribution is needed. However, note that the process of creating the Scheme
output depends on reading system headers, so the generated code may well contain operating
system and machine dependencies. If you copy code to a new machine, you should re-run
guild compile-ffi.

You are probably hoping to see an example, so let’s try one.

This is a small FH example to illustrate its use. We will start with the Cairo
(cairographics.org) package because that is the first one I started with in developing
the FFI Helper. Say you are an avid Guile user and want to be able to use Cairo in Guile.
On most systems Cairo comes with the associated pkg-config support files; this demo
depends on that support.

Warning: The FFI Helper package is under active development and there is some chance
the following example will cease to work in the future.

If you want to follow along and are working in the distribution tree, you should source
the file env.sh in the examples directory.

1

https://www.nongnu.org/nyacc
https://github.com/TaylanUB/scheme-bytestructures
https://github.com/TaylanUB/scheme-bytestructures/releases
cairographics.org
cairographics.org

By practice, I like to put all FH generated modules under a directory called ffi/, so we
will do that. We start by generating, in the ffi directory, a file named cairo.ffi with the
following contents:

(define-ffi-module (ffi cairo)

#:pkg-config "cairo"

#:include ’("cairo.h" "cairo-pdf.h" "cairo-svg.h"))

To generate a Guile module you execute guild as follows:

$ guild compile-ffi ffi/cairo.ffi

wrote ‘ffi/cairo.scm’

Though the file cairo/cairo.ffi is only three lines long, the file ffi/cairo.scm will be
over five thousand lines long. It looks like the following:

(define-module (ffi cairo)

#:use-module (system ffi-help-rt)

#:use-module ((system foreign) #:prefix ffi:)

#:use-module (bytestructures guile))

(define link-libs

(list (dynamic-link "libcairo")))

;; int cairo_version(void);

(define ~cairo_version

(delay (fh-link-proc ffi:int "cairo_version" (list) link-libs)))

(define (cairo_version)

(let () ((force ~cairo_version))))

(export cairo_version)

...

;; typedef struct _cairo_matrix {

;; double xx;

;; double yx;

;; double xy;

;; double yy;

;; double x0;

;; double y0;

;; } cairo_matrix_t;

(define-public cairo_matrix_t-desc

(bs:struct

(list ‘(xx ,double) ‘(yx ,double) ‘(xy ,double)

‘(yy ,double) ‘(x0 ,double) ‘(y0 ,double))))

(define-fh-compound-type cairo_matrix_t cairo_matrix_t-desc

cairo_matrix_t? make-cairo_matrix_t)

(export cairo_matrix_t cairo_matrix_t? make-cairo_matrix_t)

... many, many more declarations ...

2

;; access to enum symbols and #define’d constants:

(define ffi-cairo-symbol-val

(let ((sym-tab

’((CAIRO_SVG_VERSION_1_1 . 0)

(CAIRO_SVG_VERSION_1_2 . 1)

(CAIRO_PDF_VERSION_1_4 . 0)

(CAIRO_PDF_VERSION_1_5 . 1)

(CAIRO_REGION_OVERLAP_IN . 0)

(CAIRO_REGION_OVERLAP_OUT . 1)

... more constants ...

(CAIRO_MIME_TYPE_JBIG2_GLOBAL_ID

.

"application/x-cairo.jbig2-global-id"))))

(lambda (k) (or (assq-ref sym-tab k)))))

(export ffi-cairo-symbol-val)

(export cairo-lookup)

... more ...

Note that from the pkg-config spec the FH compiler picks up the required libraries to bind
in. Also, #define based constants, as well as those defined by enums, are provided in a
lookup function ffi-cairo-symbol-val. So, for example

guile> (use-modules (ffi cairo))

;;; ffi/cairo.scm:6112:11: warning:

possibly unbound variable ‘cairo_raster_source_acquire_func_t*’

;;; ffi/cairo.scm:6115:11: warning:

possibly unbound variable ‘cairo_raster_source_release_func_t*’

guile> (ffi-cairo-symbol-val ’CAIRO_FORMAT_ARGB32))

$1 = 0

We will discuss the warnings later. They are signals that extra code needs to be added
to the ffi module. But you see how the constants (but not CPP function macros) can be
accessed.

Let’s try something more useful: a real program. Create the following code in a file, say
cairo-demo.scm, then fire up a Guile session and load the file.

(use-modules (ffi cairo))

(define srf (cairo_image_surface_create ’CAIRO_FORMAT_ARGB32 200 200))

(define cr (cairo_create srf))

(cairo_move_to cr 10.0 10.0)

(cairo_line_to cr 190.0 10.0)

(cairo_line_to cr 190.0 190.0)

(cairo_line_to cr 10.0 190.0)

(cairo_line_to cr 10.0 10.0)

(cairo_stroke cr)

(cairo_surface_write_to_png srf "cairo-demo.png")

(cairo_destroy cr)

3

(cairo_surface_destroy srf)

guile> (load "cairo-demo.scm")

...

;;; compiled /.../cairo.scm.go

;;; compiled /.../cairo-demo.scm.go

guile>

If we set up everything correctly we should have generared the target file cairo-demo.png
which contains the image of a square. A few items in the above code are notable. First, the
call to cairo_image_surface_create accepted a symbolic form ’CAIRO_FORMAT_ARGB32

for the format argument. It would have also accepted the associated constant 0. In addition,
procedures declared in (ffi cairo) will accept Scheme strings where the C function wants
“pointer to string.”

Now try this in your Guile session:

guile> srf

$4 = #<cairo_surface_t* 0x7fda53e01880>

guile> cr

$5 = #<cairo_t* 0x7fda54828800>

Note that the FH keeps track of the C types you use. This can be useful for debugging (at
a potential cost of bloating the namespace). The constants you see are the pointer values.
But it goes further. Let’s generate a matrix type:

guile> (define m (make-cairo_matrix_t))

guile> m

$6 = #<cairo_matrix_t 0x10cc26c00>

guile> (use-modules (system ffh-help-rt))

guile> (pointer-to m)

$7 = #<cairo_matrix_t* 0x10cc26c00>

When it comes to C APIs that expect the user to allocate memory for a structure and pass
the pointer address to the C function, FH provides a solution:

guile> (cairo_get_matrix cr (pointer-to m))

guile> (fh-object-ref m ’xx)

$9 = 1.0

The Guile Foreign Function Interface

Guile has an API, called the Foreign Function Interface, which allows one to avoid writing
and compiling C wrapper code in order to access C coded libraries. The API is based on
libffi and is covered in the Guile Reference Manual. We review some important bits here.
For more insight you should read the relevant sections in the Guile Reference Manual. For
more info on libffi internals visit libffi (https://github.com/libffi/libffi).

The relevant procedures used by the FH are

dynamic-link

links libraries into Guile session

dynamic-func

generated Scheme-level pointer to a C function

4

https://github.com/libffi/libffi

pointer->procedure

geneates a Scheme lambda given C function signature

dynamic-pointer

provides access to global C variables

Several of the above require import of the module (system foreign).

In order to generate a Guile procedure wrapper for a function, say int foo(char *str),
in some foreign library, say libbar.so, you can use something like the following:

(use-modules (system foreign))

(define foo (pointer->procedure

int

(dynamic-func "foo" (dynamic-link "libbar"))

(list ’*)))

The argument int is a variable name for the return type, the next argument is an expression
for the function pointer and the third argument is an expression for the function argument
list. To execute the function, which expects a C string, you use something like

(define result-code (foo (string->pointer "hello")))

If you want to try a real example, this should work:

guile> (use-modules (system foreign))

guile> (define strlen

(pointer->procedure

int (dynamic-func "strlen" (dynamic-link)) (list ’*)))

guile> (strlen (string->pointer "hello, world"))

$1 = 12

It is important to realize that internally Guile takes care of converting Scheme arguments
to and from C types. Scheme does not have the same type system as C and the Guile FFI
is somewhat forgiving here. When we declare a C function interface with, say, an uint32
argument type, in Scheme you can pass an exact numeric integer. The FH attempts to
be even more forgiving, allowing one to pass symbols where C enums (i.e., integers) are
expected.

As mentioned, access to libraries not compiled into Guile is accomplished via
dynamic-link. To link the shared library libfoo.so into Guile one would write something
like the following:

(define foo-lib (dynamic-link "libfoo"))

Note that Guile takes care of dealing with the file extension (e.g., .so). Where Guile looks
for libraries is system dependent, but usually it will find shared objects in the following

• (assq-ref %guile-build-info ’libdir)

• (assq-ref %guile-build-info ’extensiondir)

• /usr/lib on GNU/Linux and macOS

• $DYLD LIBRARY PATH on GNU/Linux and macOS

• directories listed in /etc/ld.so.conf on GNU/Linux

5

When used with no argument dynamic-link returns a handle for objects already linked
with Guile. The procedure dynamic-link returns a library handle for acquiring function
and variable handles, or pointers, for objects (e.g., a pointer for a function) in the li-
brary. Theoretically, once a library has been dynamically linked into Guile, the expression
(dynamic-link) (with no argument) should suffice to provide a handle to acquire object
handles, but I have found this is not always the case. The FH will try all library handles
defined by a ffi module to acquire object pointers.

The FFI Helper Design

In this section we hope to provide some insight into the FH works. The FH specification,
via the dot-ffi file, determines the set of declarations which will be included in the target
Guile module. If there is no declartion filter, then all the declarations from the specified set
of include files are targeted. With the use of a declaration filter, this set can be reduced.
By declaration we mean typedefs, aggregate definitions (i.e., structs and unions), function
declarations, and external variables.

In the C language typedefs define type aliases, so there is no harm in expanding typedefs
which appear outside the specification. For example, say the file foo.h includes a declaration
for the typedef foo_t and the file bar.h includes a declaration for the typedef bar_t.
Furthermore, suppose foo_t is a struct that references bar_t. Then the FH will preserve
the typedef foo_t but expand bar_t. That is, if the declarations are

typedef int bar_t; /* from bar.h */

typedef struct { bar_t x; double y; } foo_t; /* from foo.h */

then the FH will treat foo_t as if it had been declared as

typedef struct { int x; double y; } foo_t; /* from foo.h */

When it comes to handling C types in Scheme the FH tries to leave base types (i.e.,
numeric types) alone and uses its own type system, based on Guiles structs and associated
vtables, for structs, unions, function types and pointer types. Enum types are handled
specially as described below. The FH type system associates with each type a number of
procedures. One of these is the printer procedure which provided the association of type
with output seen in the demo above.

One of the challenges in automating C-Scheme type conversion is that C code uses a lot
of pointers. So as the FH generates types for aggregates, it will automatically generate types
for associated pointers. For example, in the case above with foo_t the FH will generate
an aggregate type named foo_t and a pointer type named foo_t*. In addition the FH
generates code to link these two together so that, given an object f1 of type foo_t, the
expression (pointer-to f1) will generate an object of type foo_t*. This makes the task
of generating an object value in Scheme, and then passing the pointer to that value as
an argument to a FFI-generated procedure, easy. The inverse operation value-at is also
provided. Note that sometimes the C code needs to work with pointer pointer types. The
FH does not produce double-pointers and in that case, the user must add code to the FH
module defintion to support the required additional type (e.g., foo_t**).

In addition, the FH type system provide unwrap and wrap procedures used internal to
ffi-generated modules for function calls. These convert FH types to and from objects of type
expected by Guile’s FFI interface. For example, the unwrap procedure associated with the

6

FH pointer type foo_t* will convert an foo_t* object to a Guile pointer. Similarly, on
return the wrap procedure are applied to convert to FH types. When the FH generates a
type, for example foo_t it also generates an exported procedure make-foo_t that users can
use to build an object of that type. The FH also generates a predicate foo_t? to deter-
mine if an object is of that type. The (system ffi-help-rt) module provides a procedure
fh-object-ref to convert an object of type foo_t to the underlying bytestructures rep-
resentation. For numeric and pointer types, this will generate a number and for aggregate
types, a bytestructure. Additional arguments to fh-object-ref for aggregates work as
with the bytestructures package and enable selection of components of the aggregate. Note
that the underlying type for a bytestructure pointer is an integer.

Enums are handled specially. In C, enums are represented by integers. The FH does
not generate types for C enums or C enum typedefs. Instead, the FH defines unwrap and
wrap procedures to convert Scheme values to and from integers, where the Scheme values
can be integers or symbols. For example, if, in C, the enum typedef baz_t has element
OPTION_A with value 1, a procedure expecting an argument of type baz_t will accept the
symbol ’OPTION_A or the integer 1.

Where the FH generates types, the underlying representation is a bytestructure descrip-
tor. That is, the FH types are essentially a layer on top of a bytestructure. The layer
provides identification seen at the Guile REPL, unwrap and wrap procedures which are
used in function handling (not normally visible to the user) and procedures to convert
types to and from pointier-types.

For base types (e.g., int, double) the FH uses the associated Scheme values or the
associated bytestructures values. (I think this is all bytestructure values now.)

The underlying representation of bytestructure values is bytevectors. See the Guile Ref-
erence Manual for more information on this datatype.

The following routines are user-level procedures provided by the runtime module (system
ffi-help-rt):

fh-type? a predicate to indicate whether an object is a FH type

fh-object?

a predicate to indicate whether an object is a FH object

fh-object-val

the underlying bytestructure value

fh-object-ref

a procedure that works like bytestructure-ref on the underlying object

fh-object-set!

a procedure that works like bytestructure-set! on the underlying object

pointer-to

a procedure, given a FH object, or a bytestructure, that returns an associated
pointer object (i.e., a pointer type whose object value is the address of the
underlying argument); this may be a FH type or a bytestructure

value-at a procedure to dereference an object

7

fh-cast a procedure to cast arguments for varaidic C functions

make-type

make base type, as listed below; also used to make bytestructure objects for
base types (e.g., (make-double) for double)

Supported base types are

short unsigned-short int unsigned
long unsigned-long float double
size t ssize t intptr t uintptr t
ptrdiff t
int8 uint8 int16 uint16
int32 uint32 int64 uint64

These types are useful for cases where the corresponding types are passed by reference as
return types. For example

(let ((name (make-char*)))

(some_function (pointer-to name))

(display "name: ") (display (char*->string name)) (newline))

(let ((return-val (make-double)))

(another_function (pointer-to return-val))

(simple-format #t "val is ~S\n" (fh-object-ref return-val)))

You can pass a bytestructure struct value:

guile> (make-ENTRY ‘((key 0) (data 0)))

#<ENTRY 0x18a10b0>

TODO: should we support (make-ENTRY 0 0) ?

Creating FFI Modules

What might go into the Guile Ref Manual needs to include these:

#:api-code

#:cpp-defs

#:decl-filter

#:inc-dirs

#:inc-filter

#:inc-help

#:include

#:library

#:pkg-config

#:renamer

#:use-ffi-module

#:library ’("libcairo" "libmisc")

#:inc-dirs ’("/opt/local/include/cairo" "/opt/local/include")

#:renamer (string-renamer

(lambda (n)

(if (string=? "cairo" (substring n 0 5)) n

(string-append "cairo-" n))))

8

#:pkg-config "cairo"

#:include ’("cairo.h" "cairo-svg.h")

#:inc-help (cond

((string-contains %host-type "darwin")

’(("__builtin" "__builtin_va_list=void*")

("sys/cdefs.h" "__DARWIN_ALIAS(X)=")))

(else ’()))

#:decl-filter (string-member-proc

"cairo_t" "cairo_status_t" "cairo_surface_t"

"cairo_create" "cairo_svg_surface_create"

"cairo_destroy" "cairo_surface_destroy")

#:export (make-cairo-unit-matrix)

Another decl-filter, useful for debugging.

#:decl-filter (lambda (k)

(cond

((member k ’(

"cairo_t" "cairo_status_t"

"cairo_glyph_t" "cairo_path_data_t"

)) #t)

((equal? k ’(union . "union-_cairo_glyph_t")) #t)

(else #f)))

Tuning and Debugging

Since this is not all straightforward you will get errors.

Method

1. compile-ffi with flag to echo declarations

2. compile -O0 the resulting scm file

3. guile -c ’(use-modules (ffi mymod))’

MAX_HEAP_SECTS

The message is

Too many heap sections: Increase MAXHINCR or MAX HEAP SECTS

The message comes from the garbage collector. It means you’ve run out of memory. The
recommended fix is to GC_INITIAL_HEAP_SIZE to something big:

export GC_INITIAL_HEAP_SIZE=16G

I found that this actually came from a bug in the ff-compiler which generated this code:

(bs:struct

(list ...

‘(compose_buffer ,(bs:vector #f unsigned-int))

The original C declaration was

struct _GtkIMContextSimple {

...

9

guint compose_buffer[7 + 1];

...

};

Trimming Things Down

After using the FFI Helper to provide code for some packages you may notice that the
quantity of code produced is large. For example, to generate a guile interface for gtk2+,
along with glib, gobject, pango and gdk you will end up with over 100k lines of scm code.
This may seem bulky. Instead it may be preferable to generate a small number of calls for
gtk and work from there. In order to achieve this you could use the (upcoming) #:api-code
interface. This is akin to generating a small dot-h file and BLA BLA BLA.

For example, if we wanted to just generate code for the gtk hello world demo we could
geneate

(define-ffi-module (hack1)

#:pkg-config "gtk+-2.0"

#:api-code "

#include <gtk2.h>

void gtk_init(int *argc, char ***argv);

g_signal_connect

void gtk_container_set_border_width(GtkContainer *container,

guint border_width);

void gtk_container_add(GtkContainer *container, GtkWidget *widget);

void gtk_widget_show(GtkWidget *widget);

void gtk_main(void);

"

Since the above example does not ask the FH to pull in typedef’s then the pointer types
will be expanded to native. You could invent your own types or echo the typedefs from the
package headers

Warning: Possibly Unbound Variable
;;; ffi/gtk2+.scm:3564:5: warning:

possibly unbound variable ‘GtkEnumValue*’

;;; ffi/gtk2+.scm:3581:5: warning:

possibly unbound variable ‘GtkFlagValue*’

;;; ffi/gtk2+.scm:10717:11: warning:

possibly unbound variable ‘GtkAllocation*’

;;; ffi/gtk2+.scm:15107:15: warning:

possibly unbound variable ‘GdkNativeWindow’

;;; ffi/gtk2+.scm:15122:15: warning:

possibly unbound variable ‘GdkNativeWindow’

;;; ffi/gtk2+.scm:26522:11: warning:

possibly unbound variable ‘GSignalCMarshaller’

;;; ffi/gtk2+.scm:62440:11: warning:

possibly unbound variable ‘GdkNativeWindow’

;;; ffi/gtk2+.scm:62453:5: warning:

possibly unbound variable ‘GdkNativeWindow’

When I see this I check the scm file and see one of many things

10

(fht-unwrap GtkAllocation*)

This usually means that GtkAllocation was somehow defined but not the
pointer type.

Other

User is responsible for calling string->pointer and pointer->string.

By definition: wrap is c->scm; unwrap is scm->c.

define-ffi-module options:

#:decl-filter proc

#:inc-filter proc

#:include expr

expr is string or list or procecure that evaluates to string or list

#:library expr

expr is string or list or procecure that evaluates to string or list

#:pkg-config string

#:renamer proc

procdure

Here are the type of hacks I need to parse inside /usr/include with NYACC’s C99
parser. There is no such thing as a working C standard.

(define cpp-defs

(cond

((string-contains %host-type "darwin")

’("__GNUC__=6")

(remove (lambda (s)

(string-contains s "_ENVIRONMENT_MAC_OS_X_VERSION"))

(get-gcc-cpp-defs)))

(else ’())))

(define fh-inc-dirs

(append

‘(,(assq-ref %guile-build-info ’includedir) "/usr/include")

(get-gcc-inc-dirs)))

(define fh-inc-help

(cond

((string-contains %host-type "darwin")

’(("__builtin"

"__builtin_va_list=void*"

"__attribute__(X)="

"__inline=" "__inline__="

"__asm(X)=" "__asm__(X)="

"__has_include(X)=__has_include__(X)"

"__extension__="

"__signed=signed"

)))

11

(else

’(("__builtin"

"__builtin_va_list=void*" "__attribute__(X)="

"__inline=" "__inline__="

"__asm(X)=" "__asm__(X)="

"__has_include(X)=__has_include__(X)"

"__extension__="

)))))

The Module (system ffi-help-rt)

Work to Go

02 if need foo t pointer then I gen wrapper for foo t* but add foo t to *wrappers*
so if I later run into need for foo t may be prob

03 allow user to specify #:renamer (lambda (n) "make goo" => "make-goo")

04 Now the hard part if we want to reference other ffi-modules for types or other
c-routines. Say ffi-module foo defines foo t now in ffi-module bar we want to
reference, but redefine, foo t

(define-ffi-module (cairo cairo) ...)

(define-ffi-module (cairo cairo-svg) #:use-ffi-module (cairo cairo)

05 Should setters for bs:struct enum fields check for symbolic arg?

06 Use guardians for cairo_destroy and cairo_surface_destroy?

07 What about vectors? If foo(foo_t x[],

1. user must make vector of foo t

2. ffi-module author should generate a make-foo t-vector procedure

Completed

01

enum-wrap 0 => ’CAIRO_STATUS_SUCCESS

enum-unwrap ’CAIRO_STATUS_SUCCESS => 0

Administrative Items

Installation

./configure --prefix=xxx

make install

Run in Place

xxx

12

Copyright

Copyright (C) 2017 – Matthew R. Wette.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-
Cover Texts. A copy of the license is included with the distribution as COPYING.DOC.

13

