A new Concept for System Communication

Christian Heller<christian.heller@tu-ilmenau.de Torsten Kunze<info@torstenkunze.ds,
Jens Bohkinfo@jens-bohl.de, llka Philippow <ilka.philippow@tu-ilmenau.de

Technical University of lImenau
Faculty for Computer Science and Automation
Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 limenau, Germany
http://www.tu-ilmenau.de, fon: +49-(0)3677-69-1230, fax: +49-(0)3677-69-1220

Abstract cedural (Structured) ProgramminghenObject Oriented
This paper introduces an improved architecture for Syg’_rogrammlng(OQP) and more recent@omponent Ori-

o : : ented ProgrammingCOP) provided a number of help-
tem communication. The architecture is based on the Tr? S-

lator pattern which is derived from existing design pa ulparadigms to help to achieve these goals. A major im-

terns. Hierarchical abstraction and ontologies are uself ovement was the extension of ddizpeto Class own-

. . : ing inheritable properties and methods.
to combine these basic patterns and to merge their advayr, . . . ;
tages into one, domain- and language-independent sof Htr still, design problems are evident, in nearly every software
framework ' proguct. Itis thdalse combination and groupirgf classes

tlaat still keeps us away from clear and effective solutions.

This conceptual framework, called Cybernetics OrienteAS a system grows, the interdependencies between its sin-
Programming (CYBOP), has its roots in the layered ar- Y 9 ' P

.) Py i
chitecture pattern and is characterized by flexibility an%Ie parts grow with. Why does this happen? Simply be

extensibility. It helps to structure software as well as fguse a clear architecture is missing. Even if develop-

. 7) rs really try to follow a such — on some point in the
keep it maintainable. A Component Lifecycle ensures t Y)
; software’s life, compromises have to be made due to un-
proper startup and shutdown of any systems built on t . D
reseen requirements and dependencies:

of CYBOP.
Great influence was exerted by the biological model of in-- Interfacesare used to realize new propertiesryl-
formation processing in the human brain. It provided the tiple inheritance(Mix-In)

idea of a seemless integration of communication paradigmsStatic manager objectaccessible by any other ob-
and persistence mechanisms. Overcoming the classical schiests in a system are introduced

of thinking in terms of Domain, Frontend, Backend and- New software layers are plugged in withrying mech-
Communication, this architecture treats them all similar, anisms

as passive data models which can be translated into each Redundant codeeeds to be written (per copy & paste),
other — as opposed to the classical approach that unnec- to avoid too many unwanted interdependencies

essarily complicates their design. . . . -
The practical proof of this combined architectural approgch C,:an t.h'.s b? avoided at all and if, then .hOW' The au-
Eors opinion isyesand the new concept introduced in

was accomplished within an (ongoing) effort to desigp. .
and develop a module called ReForm, for the Open Sou & document can hopefully contribute a small part to
' IS, and show ways out of the misery.

Software (OSS) project Res Medicinae. The main task
this module is to provide a user interface for printing med-
ical forms. It was used to examine the communication e2 Architecture Context
tween modules and to find a structure for effective impLF— . .

. . 0 stepwise approach a solution, the problem needs to be
mentation and easy expansion.

Keywords CYBOP, Design Pattern, Hierarchy, Ontolog)}?lac.ed in the right cqntext, that is tRhysicalas well as
. Lé)g|cal System Architecture
Translator, Assembler, Mapper, Communication, Backend,”_: . .
. - Figure 1 shows a typicahformation Technolog{iT)

Persistence, Frontend, User Interface, Res Medicinae

environment (physical architecture). There is a cemtpal

. plication Servethat is accessed ypplication Clientsor

1 Introduction overWeb In addition, it can be addressed bgcal Pro-
cessegrunning on the same machine) and, most impor-
tantly, Human Usersvho control the system. The appli-
Quality of software is often defined by its maintainabikation server itself can become a client by interacting with
ity, extensibility and flexibility. In the past decadé&p- aDatabase Systeor otherRemote Servers

1.1 Problem Analysis

provide higher flexibility for software components [Pre94].
HTTP This paper is not about frameworks but its solutions are

Application . . :
] D Client extracted and used in one call@gbernetics Oriented Pro-
*PHP \ S gramming(CYBOP) [Pro04b]. Its main concept is based
S°C"E‘GU| e —— on the hierarchical structure of the universe [CHO3]. This
TURBN T8 | iouse [EEREENEN oA | ‘oo very simple idea can perfectly be mapped on software sys-
*Java * Python tems.
*Ct++ = Delphi
JMS }JDBC § Stream
Local / Database File
Process *PostgreSQL “ XML 1.4 Document Structure
*Daemon *MySQL «RTF
*ORACLE *TXT

In the course of this paper, basic design patterns are in-
troduced in section 2 and placed into the greater architec-
ture context in section 4. Section 3 provides some knowl-
edge to achieve this, that is to apply hierarchies to obtain
ontologies which finally help to combine and merge the

Each of these kinds of communication makes use of #§Sign patterns. The biological considerations of section
own interaction mechanism. This paper will concentrafedreatly contribute to the resulting architectural pattern

Fig. 1. Information Technology Environment

on the three (plus one) most important ones: Translator which gets introduced in the context of sys-
tem communication, in section 6. Practical proof is given
- DatabaseRackend in section 7 which briefly describes tiReFormsoftware
- Remote Server module, before the final summary in section 8.

Human UserFrontend
Business Knowledgebomain Modeln the Applica-
tion Server itself)

2 Basic Patterns

A system to be capable of interacting via all of thé.1 Data Mapper

above-mentioned kinds, needs to have implemented 8|erginally, the communication approach of CYBOP was

corresponding mechanisms in its software (logical arc@ésed on th®ata Mapperpattern (figure 3)

tecture). Figure 2 shows a possible inner software struc-
ture of a modular (layered) system implementation.

DomainModel [~~~ ’| Finder-Interfaces
0 i
! I
! I
=] ! I
Apps '”:;,',m z | 1
i g 3 |
Ci+ Basic 8 ——————— Mapper [~~~

Fig. 2. Inner Software Structure

Fig. 3. Data Mapper Design Pattern [ea02]

1.3 Design Pattern and Framework

One well-known way to create a layered system with clear

architecture and only few interdependencies is the use of It is part of Martin Fowler’s pattern collection called
Software Patternoften divided intdDesign; Architecture- Enterprise Application Architectufga02]. The mostim-
and other patterns). They help recognizing recurring strymrtant idea of this pattern is to abolish the interdepen-
tures for application on similar problems. Another, closetjency of domain (knowledge) model and database (per-
related technique aferameworks They can help preventsistence).

code duplication and development efforts. Both conceftie arrows in figure 3 indicate the direction of depen-
— frameworks and patterns — depend on each other aeticy. Each domain model class knows its appropriate

persistence finder interface but does not know their im{ Bomanobjex DaaTranderObject
plementation, i.e. how data are actually retrieved from the

+serialize()

database. The data mapper implementation is part of th +deserialize()

mapping package that implements all finders and map

all data of the received result set to the special attribute Assembler

of the domain model objects. There is no need for the O Do OHe) teronon
I+updateDomainObject(in dto : DataTransferObject)

domain model to know where the database is located @
how to get the data — and also not how to map the entity-
relationship model data.

If all these things are done by the corresponding data map- Fi9- 4. Data Transfer Object Design Pattern [ea02]
pers now, why shouldn't it be possible to get such a map-

ping package for persistence media of any kind, no mat-

ter which communication paradigm (File Stream, JDBr?etwork to the client. On the client’s side, a similar as-

with SQL) is used? Users would have a number of per- . .
sistence mechanisms to dynamically choose from; dev%?_mbler_takes the DTO, finds out a_II re'celved plata and
ps (disassembles) them to the client's domain model.

opers would not have to implement the same mechanis %hat manner, a DTO is able to drastically improve the
again and again for each new module (application) —le 8- ’ yimp

. . : erformance in communications.
ing to clearer code with greatly reduced size. P

This functional code separation would make it easy to d%pmpanng with the Data Mapper from chapter 2.1, the
. . . a§sembler s task of translating between data models seems
velop a complicated domain model and update it later, Iu'te similar. if not the same. Hence. why shouldn't it be
necessary. The data mapper package could contain 3 oés_sible for i’nter-s stem con%munica'tionz over network to
cial parts for local storage in a file system, in various f se aTransIatorsirzilar to the one for persistence? This
formats such as XML, CSV, TXT etc. (whether it make$. . P . .
rgnslator could provide special parts for assembling dif-

sense or not to store domain data in a pure text file), fok ent types of DTOs, independent from which communi-
number of (relational) databases (PostgreSQL, MySQ fion protocolllanguage (Sockets, RMI, JMS, CORBA,

and so on. Each of those specialised parts would kn .
how to communicate with its appropriate persistence me |u/?\’r%D etc.) is used.

and only with it. They would all include a specialised

mapper class, calle@ranslatorin CYBOP, which trans- 2 3 Model View Controller

lates the data from the domain model to the model of the

corresponding persistence mechanism. After having had a closer look at common design pat-
terns for persistence and communication, this section fi-
nally considers the so calldétontendof an application
which is mostly realized in form of a graphical user inter-
It is a well-known fact that many small requests betwedéace.

two processes, and even more between two hosts in a Astwadays, the well-knowModel View Controllerpat-
work need a lot of time. The local machine with two praern (figure 5) is used by nearly all standard applications.
cesses has to permanently exchange the program coritsxprinciple is to have thélodel holding domain data,
and the network has a lot of transfers. For each requéBgViewaccessing and displaying these data andCitwe-
there is at least a necessity of two transfers — the questitaller providing the workflow of the application by han-
of the client and the answer of the server. dling any signals (events/ actions) appearing on the view.
Transfer-methods are often expected to deliver common

data such as a Person’s address, i.e. surname, first name,

street, zip-code, town etc. These information is best re
trieved by only one transfer-call. That way, the client has
to wait only once for a server response and the server doe
not get too many single tasks. In the address-example, a

address data would best be packaged together and se

back to the client.

And that is exactly what the Data Transfer Object pat-
tern (figure 4) proposes a solution for: A centhdsem-
bler class takes all common data of the server's domain
model object and assembles them together into a special
object calledData Transfer Objec{DTO) which is a flat Fig. 5. Model View Controller Design Pattern
data structure. The server will then send this DTO over

2.2 Data Transfer Object

Controller

View > Model

Since the view (graphical user interface) serves as nteatti® creation of a super class. The OpenEHR project
of communication between a software system (applid®ro0O4a] suggests to let the above-mentioned classes in-
tion) and its user (Human Being as system), the view islierit from the more coarse-grained super clag&ssord
fact just another type of communication model that shoulthit, Headingand others.
be assembled by a special translator. Whichever reason — once the super classes are there, they
Because there are many ways in which domain data cdould be associated similarly to their sub classes, that is
be displayed, different user interfaces can exist. Eachimthe same direction, using unidirectional dependencies.
them has to have its very own translator item that knowdterwards, all associations between sub classes become
how to map data both ways, from the domain model to tsaperfluous as every sub class can reach its sibling across
user interface model and vice-versa. their parent classes’ association (figure 6).

Here a short Java code example for howttealthRecord

. may retrieve a reference faddress
3 Hierarchy and Ontology y

Section 2 explained three design patterns that are Widé@,dress a = (Address) get("address");

used in software architectures. It has shown similarities i)
between them and raised the question if they could p ealthRecordnherits thegetmethod from its super class

sibly be merged into just one pattern, call@cnslator, R'eco'rd Recordholds many instance; of typenit and
what will be described in section 4. Yet before, this seglﬁe”ng SL_Jb types. Thgetmethod delivers back an ob-
tion will demonstrate how the principle efierarchy may ject that still needs to be down-casted to the expected sub

: . type Address
be applied to obtain a®ntolo
PP g¥ The definition of classes, their dependencies (defined by

o S associations) and granularities (defined by inheritance) in
3.1 Association Elimination a software system results in several layers of classes of
An Electronic Health RecordEHR) will serve as exam- common granularity, as shown in figure 7. These layers
. . in nare often called®ntological Levehs they form arOntol-
ple domain model whose class structure is shown in par :
Co . osc{y(see section 3.2).
in figure 6. It consists of numerous parts whereof at lea:
two will be of type Addressand Problem respectively.
Following theEpisode-based EHRRcommendation [HW98],
Problemmay consist oSubjectiveandObjective All these
associations between classes are needed to navigate throug

the domain model.

HealthRec

HealthRec

Unit ol

Fig. 7. Ontological Levels and Item Container

Continuing the structure process of introducing more
Fig. 6. Parent- eliminate Child Associations and more common, coarse-grained or fine-grained super
classes, the development culminates in one top-most su-
per class of all other classes in the system, which this pa-
per callsltem Itis as general as thava.lang.Objectlass
A frequent design decision in object oriented prograrfer the Java class library, only that it additionally repre-
ming is to sum up common properties of sub classes #gnts a container that can store objects of any type, as ex-
introducing a common super class. It is not only proplained in [CHO3]. In other word$temprovides the meta
erties, but also th&ranularity of objects that can leadfunctionality of a container behaviour &il other classes.

3.2 Ontology The startableController process creates the whole appli-
cation tree, to which belong théew (as user interface),

Manifold definitions of the wordOntology exist. They s ;
. o . the Model(providing data to the view and as facade to re-
come from philosophy, metaphysics, information technol1 te servers) and theomainwith its databasédapper

ogy and others — too many to list here. This documeth0

uses its own, adapted definition and considers an on @ls r;ot difficult to figure out where the basic patterns of
ogy to bea strict hierarchy of abstract items, organized i . o gur P
: : D section 2 fit in here (figure 10): Thilodel View Con-

levels of growing granularity, that are solely unldlrectlonf ler pattern determines the cl to interact with
ally related It such represents a systematic description gprer patiern dete es the classes 1o interact a

. human user via th¥iew (sometimes calle@resentation
complex domain contexts. :

Layen; theData Mapperpattern provides necessary classes

and anEntity Relationship Modg[ERM) to connect to a

persistence medium such as a database)éta Transfer

HealthRecord | Object(DTO) pattern, finally, serves as means of commu-
InsuranceRec | nication with remote servers.
Address |
Problem |
Subjective | "User | System
Objective |

ViewAssemther
-

Controller |

BloodPressure |
BodyMassindex |
Term | ‘

Description
Principle

[DomainModel |

[ERM || | DTO |

Fig. 8. Electronic Health Record Ontology [DataMapper | f A asmmblor !

| Database | | RemoteProcess |

Figure 8 shows one possible ontology of an electronic Fig. 10. Layered Architecture with Basic Patterns
health record, as described in the previous section.

4 Loglcal Architecture For all three kinds of communication, there is a:

This section will sort the design patterns of section 2 into- System (HumanUser, DataBase, RemoteServer)
the layered architecture of a standard application. After- Model (View, ERM, DTO)
wards, the hierarchical principles of section 3 are appliedt Translator (ViewAssembler, Mapper, DTOAssembler)

to simplify and merge the design patterns which willlead Regjizing this, it is easy to create ontological layers by

to an ontology. adding one common parent class for systems, models and
translators each, which leads to a much clearer architec-
ture (figure 11). The common properties of all sub classes

Application . . .
are merged into their corresponding super class.

[ApplicationView (Presentation) |

| ApplicationController (Process) |

System
| ApplicationModel (Facade)
Domain
{ Domain {DomainObjects) | Model
|DataMapper (DataMapperObijects) | | System ‘

[Model |

{ DataSource (DB)]
Fig. 9. Layered Architecture Translator

Fig. 11.Layered Architecture with merged Patterns

A state-of-the-art software system consists of a lay-
ered architecture similar to the one shown in figure 9.

5 Biological Reflections

‘ this H mouse H screen Hcontroller‘ Itranslator] {processor‘
T T

The previous sections have shown how existing patte| -"2"9'€0 L

|
for communication can be merged into one common s) receive() i
tem architecture. All of these design patterns suggest t [Fae——ns i
very own communication paradigm which cannot be us control() -

anymore in the new, mergddanslatorarchitecture. There decode()

fore, a new way for system interaction needs to be four

1
I
}
I
1
1
1
I
1
I
1
I
1
1
1
I
1
I
L
I
1
1
L
]
I
1
I
1

I |

O encode() !]

- 1 |

Eye Muscle P ko L : :
Ear Larynx d 1 1 1 |
Skin Gland send() ! : : :
Nose | (bR | | 1 0 |@e-—-———-—=le————- : : :
Tongue e . : : : :
= =1 | | | | |

Fig. 13.Signal Processing as UML Sequence Diagram

translate éncodemethod) abstract model datBdmain-

Fig. 12.Human Being as System of Models (Brain) ~ Mode) into a special communication modelgerinter-
faceMode) for the answer signal. Finally, the answer sig-
nal will be sent as muscle action (data displaySmmee.

Following the CYBOP approach, nature — in our case
the Human body — will be considered next. Humans hage System Models
organs responsible for information input and output (fig-

ure 12). In between input and output, the information & t5y the paper has elaborated on the statics (section 4)
processed by the brain that contains a specific abstract, || as the dynamic side (section 5) of the proposed

model of the surrounding real world. The human braify,ns|atorpattern. This section will finally show the over-
consists of several regions, each being responsible fafaeqyts in a number of architecture diagrams.
special task, such as the optical region for seeing or the
cerebral cortex for actual information processing which
possibly leads to awareness. 6.1 Translator Pattern
The following example demonstrates a typical infor-)))
mation (signal) processing procedure (technical names f¥efould be seen in section 5, there is alwayisanslator
used instead of biological ones in figure 13; the terrffat is able to map domain model data to communication

MapperandAssembleare converted and merged into thE'0del datagncodemethod) and backdecodemethod).
term Translatol): Depending on which communication m_edium is used, dif-
One humarSystenwants to send another humsgystem ferent translators need to be applied (figure 14).

a message. It decides for an acoustfgiginal formulates

a sentence and talks to the other hunsystemthandle _ _ ‘

method). The other human receives Bignalacross its System 1 Signal

ear organKeyboard Mouse NetworR. TheSignalis then ' : ']

forwarded to the receiver’s brai€ontroller) where a spe- e |-
cial Regionresponsible for acoustic§ranslaton trans- Block | Controller
lates flecodemethod) the dataataTransferModglcon- b ' -]
. . . .) Screen ERMTranslator
tained in theSignaland sorts them into the human’s ab- 1 1 L |
stract model of the surrounding real worldgmainModel Region Translator GUITranslator
or KnowledgeModelrespectively). Processing of the sig- ' : y] : 1
Processor DTMTranslator

nal happens in the cerebral cortex of the bramotes-
son). If the addressed listener wants to send an anSiger
nal, it may do so by triggering a muscle reaction. For this Fig. 14. Translator Classes in a UML Class Diagram
to happen, the motoric brain regiofrénslator needs to

Every system has exactly one domain model but comill typecasted programming languages already contain an
munication models of arbitrary type can be added anytir@mtology These primitives represent the lowest layer in
(figure 15). Every translator knows only how to translatn ontology or in other words, the last level of abstraction
between the domain model and a special communicationsoftware. That is also wher€rminologies(that are
model. Direct translation between communication modetostly mentioned in conjunction with ontologies) come
is forbidden as it would break the flexibility of the wholén. Basically, these are sorted collections of terms (strings)
framework. In other words, translations always have to bat not further elaborated here.
donevia the domain model.

Domain

Comlecon) Integer \
Fraction |

‘ Persistence Model ‘ ‘ Communication Model ‘ ‘ UserInterfaceModel

Boolean

Fig. 15. Translator accessing various Models . .
Fig. 17.Basic (Language) Ontology

Putting the three ontologieBasic Model and Sys-
6.2 Ontology Framework temthat were introduced in this paper together, results

])) in the CYBOP architecture of figure 18. All ontologies
When placing the translators of figure 14 into the greatgsse on thé.anguage OntologyA system built after the

system architecture con_textS:ystem O_ntologys shown System Ontologgnodel (in this paper the example of an
in figure 16 may be retrieved. It contains the n&@ns- Ejecironic Health Recordpplication) may access one ore

lator as sub class dRegion input/ output devices as subygreModel Ontologiegin the example the health record
class ofBlock Module(Applicatior) andUseras sub class 4omain model). All dependencies are unidirectional.
of Systenand further parts which are not the topic of this

paper. For the ease of understanding, the biological coun-
terparts have been added on the right side of the figure.

.- S System
Specialized translators may be derived as sub class of the [
one shown in figure 16. Node
————
Model
Family
Team Hsai
Human [Chain | [string |
Animal | | \\ Character | /\:I
e
Muscle
Sensor CYBOP
EyeRegion
ProcessorComp NerveCell .
Fig. 18.CYBOP Ontology Framework

Organelle
DNA
Chromosome

Fig. 16.System Ontology 6.3 Consistency

Configuration

The described models are highly flexible and extensible
and absolutely transparent to the user (developer). S/he
To complete the list of important ontology modelsyill not know whether the current communication is with
figure 17 gives an overview of language-integrated typi® local file system, a database or a remote process on
(commonly calledPrimitiveg. And as a matter of fact: another machine.

However, this transparency causes a number of problefosure, it shall serve medical documentation, laboratory
Surely, the most common question is how to ensure catata, billing etc.
sistency, security and minimum redundance? The follolRes Medicinags separated into single modules solving
ing two paragraphs give an answer to the first part of thdferent tasks. One module in which the CYBOP com-
guestion — consistency and uniqueness of data sets. Maxhication concepts were appliedReForm(figure 19).
imizing security and minimizing redundancy have to bi¢ offers a medical form that can be filled in and printed
analysed in future works. out. Since one of the main reasons to implement this mod-
ule was the testing and proof of the new persistence and

Object ID (OID) Most database systems provide an owFPmmunication concepts, it includes a dialog for choosing
algorithm to generate primary keys for the tables. But tHé¢ communication protocol or persistence mechanism,
applications that use our communication architecture sHgpectively. This is the only remaining part where users
also be able to work if a database server is not reachabave to care about the underlaying techniques. They also
e.g. due to a network failure. Thats why the keys are gdifve to decide whether to use the local file systentwia
erated locally, by each application. Based on the assuriffisible Markup Languag@ML) format or to store the
tion that every host in a network has a network card,d@ta in a central database. In the future, an XML file for-
thereby has a unique internet address. This number is @t may as well be used for remote communication, e.qg.
catinated with an exact time stamp (nanoseconds). ThatigzSimple Object Access Protod@OAP).

why the OID is unique in the global network and uniquBecause of the component-based desidRexf Medicinae

in time. it is possible to start more than one instanc&eformat

The proposed approach uses the OID as file name for 106 same time. In this way, the data exchange between
storage and the same OID as primary key in the main tapl@dules can be tested. A moddooks for another reg-

of the database. Therewith, both models can be mapp&gred modulé at the naming service Gtemote Method

to each other. Of course, it is necessary to avoid overwiftvocation(RMI), Common Object Request Broker Archi-
ing of new data in the database. If, for example, a négcture (CORBA) or some otherX gets the address of
work connection is cut and a little later, one wants to gite remote servic (depending on the communication
data from the local files and write them up in the restoré@echanism). The stub and skeletonxoénd Y marshal,
central database, it has to be made sure that nobody 8&fd and unmarshal the data for further working.

has modified the data during the offline-time. That is why

there is another technique to ensure this — the time stamp.

Time Stamp Most database developers will know this

technique. Each table has a separate column for storing
the time at which the data were written into this table. I

someone requests information from the database, the tii .
stamp is delivered as well. After modifying the data, the oo 1T . mm
have to be written back into the database. At this tim¢ ™" mn o mr
both timestamps (the one in the database table and the

[Billert, Ronny

delivered before) are compared. If there is a difference, tl - | [N omar Cout

data were modified by another user. Then, one hastoci "= = e P
about the update without overwriting the new data in th T 5
table.

7 Physical Architecture

This section wants to give practical proof of the theoret
cal models described before. It first introduces the proje
Res Medicinaén whose frame the software was written.
Afterwards, two solutions of a physical architectuFe/o-
Tier andThree-Tierare explained.

Fig. 19.ReForm Module
7.1 Res Medicinae

The practical background for the application of CYBOP
is Res Medicinagpro04c]. A modern clinical informa-
tion system is the aim of all efforts in this project. In the

7.2 Two Tier Architecture 7.3 Three Tier Architecture

o] . To provide a more comfortable structure than the typical
The proposed CYBOP communication architecture is Cus,o_Tierarchitecture as shown in section 7.2, there is the

rently implemented in form of &wo-Tierarchitecture (fig- necessity of arhree-or Multi-Tier Architecture. If, for

ure 20). example, the location of the database server was changed
then, in aTwo-Tierarchitecture, all clients would have to
be updated. Figure 21 makes a proposition to solve this
7777777777777 1 problem.
Application A Application B

DomainModel DomainModel

Local host ‘

I
|
|
I
|
|
I
Sifver] [Client] | i randator | |
I
J

[paaTransferTrandator | [SQL-Package | [DataTransterTranglator | [SQL-Package] |
Application A Application B |
Sove] [oiai] | rensator | ‘
[} J DomainModel DomainModel ‘
‘ JMS, RMI, CORBA | \
77777777777777777777777 - [DaaTransferTrandator |5 DTO || |[DataTrensferTrandlaior |+ DTO | |
I Remotesover | |
™ owmme | Cligt Gt \
I management system | ‘
‘ ‘ MS ‘
} i »< | 5 ———_——————— — = — = — — T — — — — —

| I

\ o
‘ Data Translator for database !
| v |
Fig. 20. Two Tier Architecture || [J [010 | Tt }
T \
\
} ERTranslator |
| A [
. _— A P
It shows how two autarchic components (Application et T
A and B) intercommunicate and save their domain data in | Remote server 2 Database

different ways. Each component fulfills a special task and }

works as a client as well as a server. One can recognize | —__

the two pattern®ataMapperandDTO. }
\

If a client requests some data from another component, the
central objecDataTransferTranslatocollects all needed
information from theDomainModeland encodes (packs)
them into oneDataTransferModelNow, the Serverob-
ject can send thiBTO back to the requesting client com-
ponent. On the other side of the wire, tidéent object
receives thé®TO, aDataTransferTranslatodecodes (un-
packs) the data and writes them into themainModel

In this example, the two components are located on t8e Summary

same host. Itis also possible to distribute them. Therefore,

each component is also able to communicate with othédajor research objectives are to find concepts and princi-
components that are situated somewhere in the netwgales to increase the reusability of software, their archi-
The arrows in applications indicate the dependencies bectures as well as the resulting code. The aim of this
tween the single architectural elements, whereas the autrk was to find an architecture that simplifies and unifies
side arrows show the communication between componeghtsimplementation of any kind of communication mech-
and database server. anism.

All data storing operations are hidden in a spePrisis- Persistence, remote communication and user interface mech-
tenceTranslatodike the one shown in figure 20, on theanisms have common properties. Classical system archi-
example of a database. The SQL statements were plasdures treat them dackend Data Transferand Fron-

in a separate package. If there is the need for getting inf@nrdand use different methods and design patteDasgdMap-
mation from a database, the translator uses the statempetsDataTransferObje¢tMModelViewControlleyto imple-

of the SQL Packagend maps data of the result set to thment them.

DomainModel This paper proposed to sum up their common properties

1

\

management system ‘
\

\

\

\

]

Fig. 21.Three Tier Architecture

and behaviour and to merge them into just one commufire94] PREE, W.: Meta Patterns — A Means for Capturing the

cation pattern calledranslator, thereby avoiding redun- Essentials of Reusable Object-Oriented Desigtro-
dant parts. The new pattern required a new communica- ceedings of ECOOP '94150-162, 1994.

tion paradigm and this paper described one that folloffg004a] PROJECT OPENEHR: Open Electronic Health
the information processing procedure of the human brain, ~ Record (OpenEHR), formerly Good Electronic/

European Health Record (GEHR)2000-2004.
http://www.openehr.org.
] PROJECT THE CYBOP. Cybernetics Ori-

Finally, the pattern was integrated into a greater system
context using ontologies. The proposed ontology fram[tlg,—roo b
work consists of aBasic a Model a_nd aSyste_nOntoI- ented Programming (CYBOP) 2002-2004.
ogy and seems to be a good solution for the implementa- http:/Awww.cybop.net.

tion of highly flexible, easily extensible and maintainablgroo4c] PrRoJECT THE RES MEDICINAE: Res Medicinae
source code. The interdependency of domain data, per- — Medical Information System 1999-2004.
sistence layer, communication layer and user interface is http://www.resmedicinae.org.

abolished.

The time needed to create such an architecture (like in

form of the CYBOP framework) is clearly more than for

the classical way. But once the architecture is there —it can

save a tremendous amount of time when deriving modules

being capable of communicating across various mecha-

nisms at once. Due to its flexibility and low dependencies,

it also ensures that extensions (e.g. new communication

mechanisms) and modifications can be done anytime later

without destroying already existing solutions.

9 Acknowledgements

Our special thanks go to all Enthusiasts of the Open Source
Community who have provided us with a great amount
of knowledge through a comprising code base to build
on. We'd also like to acknowledge the contributordRefs
Medicinag especially all medical doctors who supported
us with their analysis work [KH04] and specialised knowl-
edge in our project mailing lists.

References

[CHO3] CHRISTIAN HELLER, JENSBOHL, TORSTENKUNZE
ET AL.: Flexible Software Architectures for Presenta-
tion Layers demonstrated on Medical Documentation
with Episodes and Inclusion of Topological Report
Journal of Free and Open Source Medical Computing
(JOSMC), June 2003. http://www.josmc.net.

[ea02] AL., MARTIN FOWLER ET. Patterns of Enterprise
Application Architecture (Information Systems Archi-
tecture) Addison-Wesley, Boston, Muenchen, 2001-
2002. http://www.aw.com.

[HW98] HENK WESTERHOF DUTCH COLLEGE OF GEN-
ERAL PRACTITIONERS, UTRECHT. Episodes of
Care in the New Dutch GP Systems Primary
Health Care Specialist Group Annual Confer-
ence Proceedings, Cambridge, September 1998.
http://phcsg.ncl.ac.uk/conferences/cambridge1998/westerhof.htm.

[KHO4] KARSTEN HILBERT, CHRISTIAN HELLER,
RoOLAND COLBERG ET AL.: Analysedoku-
ment zur Erstellung eines Informationssystems
fuer den Einsatz in der Medizin The Res
Medicinae Free Software Project, 2001-2004.
http://www.resmedicinae.org/model/analysis.

