
Cybernetics Oriented Programming

(CYBOP)

Beginners Tutorial

04.04.2013

Tim Illner<tim.illner@it2010.ba-leipzig.de>

Index Of Contents

1Introduction..4

2Installing CYBOP...4

2.1Download for Linux distributions...4

3Compiling with CYBOI...6

3.1preparing to run make command..6

3.2make command...7

3.3run examples...8

3.3.1HelloWorld..8

3.3.2addition..8

3.3.3addition_dynamic_model..9

3.3.4addition_dynamic_model_with_root..9

3.3.5addition_static_model...9

3.3.6addition_using_indices..9

3.3.7addition_using_serialisation..9

3.3.8character_encoding..10

3.3.9counter...10

3.3.10 counter_static_model...10

3.3.11 counter_storage...10

3.3.12 double..11

3.3.13 exit..11

3.3.14 exit_cybol_file..11

3.3.15 gui...12

3.3.16 if-else...12

3.3.17 index_usage...13

3.3.18 programme_execution...13

3.3.19 shell_command_execution...13

3.3.20 shell_output...13

3.3.21 shell_output_branch..14

Beginners Tutorial 2/17

3.3.22 shell_output_file...14

3.3.23 shell_output_sequence..14

3.3.24 time_output_1..15

3.3.25 time_output_2..15

3.3.26 time_output_3..15

3.3.27 tui..16

3.3.28 ui_control...16

4upshot..17

Beginners Tutorial 3/17

1 Introduction

Cybernetics Oriented Probgramming (CYBOP) follows a new idea of
software development. Its structure bases upon native concepts for
intuitive understanding. CYBOP consists of two core elements: Cybernetics
Oriented Language (CYBOL) and Cybernetics Oriented Interpreter (CYBOI).

CYBOL is a platform independent application programming language. As
based on XML CYBOL is structured in tags and trees.

CYBOI instead is the appropriate interpreter to run in CYBOL written
programs.

2 Installing CYBOP

There are two ways provided to download the source code of CYBOP. You
can get the realase directly from the GNU web page or use subversion
(SVN). The most current release is cybop-0.13.0.tar.gz.

2.1 Download for Linux distributions

On this web page you will find all releases of CYBOP as tar.gz packages.
http://download.savannah.gnu.org/releases/cybop/
Simply pick and download a tar.gz file and unpack it into a new created
project directory (eg. “cybop“).

Make sure the required packages are installed. Open the Terminal and use
the command “cd“ to navigate to the location of the packed file. Now
enter the following command line
tar -xvf cybop-0.13.0.tar.gz /[home]/[user]/[install_directory] and the
package will be unpacked to the target install directory.

Beginners Tutorial 4/17

http://download.savannah.gnu.org/releases/cybop/
http://download.savannah.gnu.org/releases/cybop/cybop-0.13.0.tar.gz

To use SVN and the created repository which is highly recommended for
later development. Therefore you switch to the desired directory using the
Terminal and paste the following command line:
svn co svn://svn.savannah.nongnu.org/cybop/modulename
Instead of “modulename“ you type “trunk“, typically.

Finally you should find the following files and folders in the directory

Beginners Tutorial 5/17

3 Compiling with CYBOI

Before you can start to compile it's recommended to check wheather all
necessary packeages are already installed. Most of them are listed below:

autotools

libtool

xorg

xorg-dev

xlibs-dev

freeglut3

3.1 preparing to run make command

After that the autogen.sh script file in the CYBOP directory has to be
exectuted. To make it executable, use the command chmod +x
autogen.sh and run the script file after.

The output should look like the following

libtoolize: Consider adding `AC_CONFIG_MACRO_DIR([m4])' to configure.ac and
libtoolize: rerunning libtoolize, to keep the correct libtool macros in-tree.
libtoolize: Consider adding `-I m4' to ACLOCAL_AMFLAGS in Makefile.am.
running CONFIG_SHELL=/bin/bash /bin/bash ./configure --no-create --no-recursion
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... no
checking for mawk... mawk
checking whether make sets $(MAKE)... yes
[...]
libtool: link: gcc -I/usr/include -DGNU_LINUX_OPERATING_SYSTEM -g -O2 -o cyboi cyboi.o
-lxcb -lpthread -lX11 -lGLU -lGL
make[2]: Verlasse Verzeichnis '/home/CYBOP/src/controller'
make[2]: Betrete Verzeichnis '/home/CYBOP/src'
make[2]: Für das Ziel »all-am« ist nichts zu tun.
make[2]: Verlasse Verzeichnis '/home/CYBOP/src'
make[1]: Verlasse Verzeichnis '/home/CYBOP/src'
make[1]: Betrete Verzeichnis '/home/CYBOP'
make[1]: Für das Ziel »all-am« ist nichts zu tun.
make[1]: Verlasse Verzeichnis '/home/CYBOP'

Beginners Tutorial 6/17

Next the configure script file hast to be run. To do that simply repeat the
steps of the description for running autogen.sh. The output should look
like the following:

checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p
checking for gawk... no
checking for mawk... mawk
checking whether make sets $(MAKE)... yes
checking how to create a ustar tar archive... gnutar
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking Host cpu... x86_64
[...]
checking for setlocale... yes
checking for socket... yes
checking for strtol... yes
configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile
config.status: creating src/controller/Makefile
config.status: executing depfiles commands
config.status: executing libtool commands

Now you can optionally run the make clean command to clean (delete)
object files and libraries of an older compilation.

3.2 make command

The make file creates an executable program from the sources in the
CYBOP folder. After that CYBOP projects can be interpreted by CIBOY.
Simply run the make file by the the command make. Be sure the folders
“src“ and “src/controller“ have been created.

Now you can start compiling CYBOP programs.

Beginners Tutorial 7/17

3.3 run examples

To get a first insight of compiling with CYBOI let's run some files from the
example folder. Therefore the previously described steps 3.1 and 3.2 have
to be successfully completed.

In CYBOL written files can be compiled via terminal the following way:
[path/]cyboi [path/]filename.cybol. To run them all correctly you
have to switch to the examples directory itself.

The interpreter (cyboi) is situated in cybop-directory/src/controller/cyboi.
The directory cybop-directory/examples accommodates the example
folders. Each folder is named by the specific example module.

Below you will find a survey of all examples and their output. Feel free to
copy the files and edit them to get a better feeling for CYBOL. As it is the
most common example, we will start with “Hello, World!“.

3.3.1HelloWorld

This is the command to run the “Hello, World!“ example from the main
CYBOP directory:

src/controller/cyboi examples/helloworld/run.cybol.

The picture shows the output:

3.3.2addition

This example adds the two vectors and prints the result to the screen:

2,3,4

Beginners Tutorial 8/17

3.3.3addition_dynamic_model

In this example three different integer variables are dynamically created,
added and the sum is being printed to the console output:

4

3.3.4addition_dynamic_model_with_root

“With root“ describes the root node that is created and after all values are
added to this node, called “addition_application“. All other functionallities
are equal to the former example, except the integer values:

7

3.3.5addition_static_model

For this example an external model file (“domain.cybol)“ is called on
execution. It contains several integer values that are added and finally
printed:

4

3.3.6addition_using_indices

This example is very compareable to “addition_dynamic_model“. The
difference is the way of accessing the knowledge tree nodes. Here they
are not only accessed by dot-separated names (.sum) but also by indices
(.[0]). The output looks following:

5

3.3.7addition_using_serialisation

In this specific example some integer values are dynamically created and
initialised. Additionally this time another text node is created and
initialised. The text from the node is being deserialised into an integer
value which is being added to the sum of the other integer values. Then
the sum us being printed on screen:

7

Beginners Tutorial 9/17

3.3.8character_encoding

As there are characters that cannot displayed correctly on console they
are written into a file in the local directory so they can be checked. The file
will be utf-8-encoded and named “iso-8859-15.txt“.

3.3.9counter

The example “counter“ counts from 1 to 10 and prints each number on the
screen:

3.3.10counter_static_model

On the console you will have the same output as in the previous example.
But here the program is run in a loop.

3.3.11counter_storage

This problem gets the number from the external file count.txt. This
number is printed on the screen, counted up and rewritten to the file.
Here is the output when you started with 9 (in the file):

The file itself now will be containing the integer number 10.

Beginners Tutorial 10/17

3.3.12double

In the output from this example you can see a few calculation examples
for double values:

3.3.13exit

The exit example simply starts the exit operation. That means the
program is shutting down right after it started.

3.3.14exit_cybol_file

This example works equal to the previous one. It simply differs in the
external run of the exit operation from an external file “exit.cybol“.

Beginners Tutorial 11/17

3.3.15gui

As you can see below the gui example will draw a window filled with
geometric functions.

The console output will be following:

3.3.16if-else

This examples reads from model files the true.cybol and false.cybol. It
demonstrates the usuage of the if-else-statement. Therefore you got two
run-files with different output:

Beginners Tutorial 12/17

3.3.17index_usage

“Index usage“ tests hierarchical knowledge path names and indices by
building them up and accessing them. Check the “run.cybol“ to view the
graphical tree it follows, the output shows the nodes it passes:

3.3.18programme_execution

The programme_execution example launches a former installed program
by the bash command. In case of the pre-settings the Midnight
Commander will be started. Therefore of course it has to be installed and
the environment variables have to be set correctly.

3.3.19shell_command_execution

A quite simple tool to run a unix shell (bash) command.

3.3.20shell_output

This program will simply print a string onto the screen. In the pre-edited
example you will get the following output:

Beginners Tutorial 13/17

3.3.21shell_output_branch

Like the previous example you get a bash console output with this
program. In opposite it calls two external models and finally shuts down
by calling an exit operation.

3.3.22shell_output_file

The shell output for this example is read from a local file “text.txt“.

3.3.23shell_output_sequence

Once more a shell output, generated by a called sequence of commands
adressed an external model. Again we have the output:

Hello World!

Beginners Tutorial 14/17

3.3.24time_output_1

For a repeatedly print of the current timestamp this example calls a bash
command in a loop.

3.3.25time_output_2

This one does principally the same as the previous example. But the time
stamps are first printed to a file and read from there afterwards to be put
out on the console.

3.3.26time_output_3

The last time example output looks again close to the first. A loop prints
the current time with a delay of one second which is created by another
bash command.

Beginners Tutorial 15/17

3.3.27tui

The tui (text user interface) example is a small compilation of some above
explained programs. It receives command from the user input and can
even star another program (Midnight Commander) from the bash.

3.3.28ui_control

This is one of the most extensive examples. It is comparable to the tui but
got more features as you can get from the output:

Beginners Tutorial 16/17

4 upshot

Hopefully this manual introduced you well to the world of CYBOP. As it
uses a logical structure by the XML-based language, it's capable to find
solutions for a huge variety of problems. The examples give an insight for
the possibilities CYBOP and its components provide. You may even got
interested in starting development in CYBOL yourself.

Beginners Tutorial 17/17

