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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

This document is a complete “re-implementation” of the original Axiom book by Jenks and
Sutor. Virtually every line has been reviewed and rewritten into the new Axiom pamphlet
format. Changes were made to reflect the new Axiom system. Additional material was added
and some previous examples were rewritten. This is intended to be a “living” document with
material referenced or gathered automatically from other parts of the system documentation.
Future plans include adding active examples (moving graphics, in-line command prompts)
using Active-DVI.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I'm looking forward to future milestones.

With that in mind I've introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))
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Foreword

You are holding in your hands an unusual book. Winston Churchill once said that the
empires of the future will be empires of the mind. This book might hold an electronic key
to such an empire.

When computers were young and slow, the emerging computer science developed dreams
of Artificial Intelligence and Automatic Theorem Proving in which theorems can be proved
by machines instead of mathematicians. Now, when computer hardware has matured and
become cheaper and faster, there is not too much talk of putting the burden of formulating
and proving theorems on the computer’s shoulders. Moreover, even in those cases when com-
puter programs do prove theorems, or establish counter-examples (for example, the solution
of the four color problem, the non-existence of projective planes of order 10, the disproof of
the Mertens conjecture), humans carry most of the burden in the form of programming and
verification.

It is the language of computer programming that has turned out to be the crucial instrument
of productivity in the evolution of scientific computing. The original Artificial Intelligence ef-
forts gave birth to the first symbolic manipulation systems based on LISP. The first complete
symbolic manipulation or, as they are called now, computer algebra packages tried to imbed
the development programming and execution of mathematical problems into a framework
of familiar symbolic notations, operations and conventions. In the third decade of symbolic
computations, a couple of these early systems—REDUCE and MACSYMA—still hold their
own among faithful users.

Axiom was born in the mid-70’s as a system called Scratchpad developed by IBM researchers.
Scratchpad/Axiom was born big—its original platform was an IBM mainframe 3081, and
later a 3090. The system was growing and learning during the decade of the 80’s, and its
development and progress influenced the field of computer algebra. During this period, the
first commercially available computer algebra packages for mini and and microcomputers
made their debut. By now, our readers are aware of Mathematica, Maple, Derive, and
Macsyma. These systems (as well as a few special purpose computer algebra packages in
academia) emphasize ease of operation and standard scientific conventions, and come with
a prepared set of mathematical solutions for typical tasks confronting an applied scientist
or an engineer. These features brought a recognition of the enormous benefits of computer
algebra to the widest circles of scientists and engineers.

The Scratchpad system took its time to blossom into the beautiful Axiom product. There is
no rival to this powerful environment in its scope and, most importantly, in its structure and
organization. Axiom contains the basis for any comprehensive and elaborate mathematical
development. It gives the user all Foundation and Algebra instruments necessary to develop
a computer realization of sophisticated mathematical objects in exactly the way a mathe-
matician would do it. Axiom is also the basis of a complete scientific cyberspace—it provides
an environment for mathematical objects used in scientific computation, and the means of
controlling and communicating between these objects. Knowledge of only a few Axiom lan-
guage features and operating principles is all that is required to make impressive progress
in a given domain of interest. The system is powerful. It is not an interactive interpretive
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environment operating only in response to one line commands—it is a complete language
with rich syntax and a full compiler. Mathematics can be developed and explored with ease
by the user of Axiom. In fact, during Axiom’s growth cycle, many detailed mathematical
domains were constructed. Some of them are a part of Axiom’s core and are described in
this book. For a bird’s eye view of the algebra hierarchy of Axiom, glance inside the book
cover.

The crucial strength of Axiom lies in its excellent structural features and unlimited expandability—
it is open, modular system designed to support an ever growing number of facilities with
minimal increase in structural complexity. Its design also supports the integration of other
computation tools such as numerical software libraries written in FORTRAN and C. While
Axiom is already a very powerful system, the prospect of scientists using the system to
develop their own fields of Science is truly exciting—the day is still young for Axiom.

Over the last several years Scratchpad/Axiom has scored many successes in theoretical math-
ematics, mathematical physics, combinatorics, digital signal processing, cryptography and
parallel processing. We have to confess that we enjoyed using Scratchpad/Axiom. It pro-
vided us with an excellent environment for our research, and allowed us to solve problems
intractable on other systems. We were able to prove new diophantine results for ; estab-
lish the Grothendieck conjecture for certain classes of linear differential equations; study
the arithmetic properties of the uniformization of hyperelliptic and other algebraic curves;
construct new factorization algorithms based on formal groups; within Scratchpad/Axiom
we were able to obtain new identities needed for quantum field theory (elliptic genus formula
and double scaling limit for quantum gravity), and classify period relations for CM varieties
in terms of hypergeometric series.

The Axiom system is now supported and distributed by NAG, the group that is well known
for its high quality software products for numerical and statistical computations. The devel-
opment of Axiom in IBM was conducted at IBM T.J. Watson Research Center at Yorktown,
New York by a symbolic computation group headed by Richard D. Jenks. Shmuel Winograd
of IBM was instrumental in the progress of symbolic research at IBM.

This book opens the wonderful world of Axiom, guiding the reader and user through Ax-
iom’s definitions, rules, applications and interfaces. A variety of fully developed areas of
mathematics are presented as packages, and the user is well advised to take advantage of the
sophisticated realization of familiar mathematics. The Axiom book is easy to read and the
Axiom system is easy to use. It possesses all the features required of a modern computer
environment (for example, windowing, integration of operating system features, and interac-
tive graphics). Axiom comes with a detailed hypertext interface (HyperDoc), an elaborate
browser, and complete on-line documentation. The HyperDoc allows novices to solve their
problems in a straightforward way, by providing menus for step-by-step interactive entry.

The appearance of Axiom in the scientific market moves symbolic computing into a higher
plane, where scientists can formulate their statements in their own language and receive com-
puter assistance in their proofs. Axiom’s performance on workstations is truly impressive,
and users of Axiom will get more from them than we, the early users, got from mainframes.
Axiom provides a powerful scientific environment for easy construction of mathematical tools
and algorithms; it is a symbolic manipulation system, and a high performance numerical sys-
tem, with full graphics capabilities. We expect every (computer) power hungry scientist will
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want to take full advantage of Axiom.

David V. Chudnovsky Gregory V. Chudnovsky
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Richard Dimick Jenks
Axiom Developer and Computer Algebra Pioneer

Richard D. Jenks was born on November 16, 1937 in Dixon, Illinois,
where he grew up. During his childhood he learned to play the organ
and sang in the church choir thereby developing a life-long passion
for music.

He received his PhD in mathematics from the University of Illinois at
Urbana-Champaign in 1966. The title of his dissertation was
‘‘Quadratic Differential Systems for Mathematical Models" and was
written under the supervision of Donald Gilles. After completing his
PhD, he was a post-doctoral fellow at Brookhaven National Laboratory
on Long Island. In 1968 he joined IBM Research where he worked until
his retirement in 2002.

At IBM he was a principal architect of the Scratchpad system, one of
the earliest computer algebra systems(1971). Dick always believed that
natural user interfaces were essential and developed a user-friendly
rule-based system for Scratchpad. Although this rule-based approach
was easy to use, as algorithms for computer algebra became more
complicated, he began to understand that an abstract data type
approach would give sophisticated algorithm development considerably
more leverage. In 1977 he began the Axiom development (originally
called Scratchpad II) with the design of MODLISP, a merger of Lisp
with types (modes). In 1980, with the help of many others, he
completed an initial prototype design based on categories and domains
that were intended to be natural for mathematically sophisticated
users.

During this period many researchers in computer algebra visited IBM
Research in Yorktown Heights and contributed to the development of the
Axiom system. All this activity made the computer algebra group at IBM
one of the leading centers for research in this area and Dick was
always there to organize the visits and provide a stimulating and
pleasant working environment for everyone. He had a good perspective
on the most important research directions and worked to attract
world-renowned experts to visit and interact with his group. He was an
ideal manager for whom to work, one who always put the project and the
needs of the group members first. It was a joy to work in such a
vibrant and stimulating environment.

After many years of development, a decision was made to rename
Scratchpad II to Axiom and to release it as a product. Dick and Robert
Sutor were the primary authors of the book Axiom: The Scientific
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Computation System. In the foreword of the book, written by David and
Gregory Chudnovsky, it is stated that ‘‘The Scratchpad system took its
time to blossom into the beautiful Axiom product. There is no rival to
this powerful environment in its scope and, most importantly, in its
structure and organization.’’ Axiom was recently made available as
free software. See http://savannah.nongnu.org/projects/axiom.

Dick was active in service to the computer algebra community as

well. Here are some highlights. He served as Chair of ACM SIGSAM
(1979-81) and Conference Co-chair (with J. A. van Hulzen) of EUROSAM
’84, a precursor of the ISSAC meetings. Dick also had a long period of
service on the editorial board of the Journal of Symbolic

Computation. At ISSAC ’95 in Montreal, Dick was elected to the initial
ISSAC Steering Committee and was elected as the second Chair of the
Committee in 1997. He, along with David Chudnovsky, organized the
highly successful meetings on Computers and Mathematics that were held
at Stanford in 1986 and MIT in 1989.

Dick had many interests outside of his professional pursuits including
reading, travel, physical fitness, and especially music. Dick was an
accomplished pianist, organist, and vocalist. At one point he was the
organist and choirmaster of the Church of the Holy Communion in
Mahopac, NY. In the 1980s and 1990s, he sang in choral groups under
the direction of Dr. Dennis Keene that performed at Lincoln Center in
New York city.

Especially important to him was his family: his eldest son Doug and
his wife Patricia, his son Daniel and his wife Mercedes, a daughter
Susan, his brother Albert and his wife Barbara, his sister Diane
Alabaster and her husband Harold, his grandchildren Douglas, Valerie,
Ryan, and Daniel Richard, and step-granddaughter Danielle. His
longtime companion, Barbara Gatje, shared his love for music,
traveling, Point 0’Woods, and life in general.

On December 30, 2003, Dick Jenks died at the age of 66, after an
extended and courageous battle with multiple system

atrophy. Personally, Dick was warm, generous, and outgoing with many
friends. He will be missed for his technical accomplishments, his
artist talents, and most of all for his positive, gentle, charming
spirit.

Prepared by Bob Caviness, Barry Trager, and Patrizia Gianni with
contributions from Barbara Gatje, James H. Griesmer, Tony Hearn,
Manuel Bronstein, and Erich Kaltofen.
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Introduction to Axiom

0.1 Introduction to Axiom

Welcome to the world of Axiom. We call Axiom a scientific computation system: a self-
contained toolbox designed to meet your scientific programming needs, from symbolics, to
numerics, to graphics.

This introduction is a quick overview of what Axiom offers.

0.1.1 Symbolic Computation

Axiom provides a wide range of simple commands for symbolic mathematical problem solv-
ing. Do you need to solve an equation, to expand a series, or to obtain an integral? If so,

just ask Axiom to do it.
1
/ s oN1/3y dx
(23 (a+bx)™"”)

we would enter this into Axiom as:

Given

integrate(1/(x**3 * (a+b*x)**(1/3)),x)

which would give the result:

-2 % 22 \/glog(% \B/bx+a2+\3/52 \3/bx+a+a>+

4 b% 22 \/glog(\?/&2 \3/bx+a—a)+

3 2 3/
12b2x2arctan<2\/§\/6 bx+a+a\/§>+

3a

(12bx—9a) \/5\3/5\3/bx+a2
18 a2 22 /3 ¥a

Type: Union(Expression Integer,...)

Axiom provides state-of-the-art algebraic machinery to handle your most advanced symbolic
problems. For example, Axiom’s integrator gives you the answer when an answer exists.
If one does not, it provides a proof that there is no answer. Integration is just one of a
multitude of symbolic operations that Axiom provides.
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0.1.2 Numeric Computation

Axiom has a numerical library that includes operations for linear algebra, solution of equa-
tions, and special functions. For many of these operations, you can select any number of
floating point digits to be carried out in the computation.

Solve x4 — 492* + 9 to 49 digits of accuracy. First we need to change the default output
length of numbers:

digits (49)

and then we execute the command:
solve (x**x49-49%x*x*x4+9 = 0,1.e-49)

[x = —0.6546536706904271136718122105095984761851224331556,
x = 1.086921395653859508493939035954893289009213388763,
x = 0.6546536707255271739694686066136764835361487607661]

Type: List Equation Polynomial Float

The output of a computation can be converted to FORTRAN to be used in a later numerical
computation. Besides floating point numbers, Axiom provides literally dozens of kinds of
numbers to compute with. These range from various kinds of integers, to fractions, complex
numbers, quaternions, continued fractions, and to numbers represented with an arbitrary
base.

What is 10 to the 90-th power in base 327

radix (10%*90,32)

returns:

FMM30955CSEIVOILKH820CN3I7PICQUOCQMDOFV6TPO0O0000000000000000

Type: RadixExpansion 32

The AXIOM numerical library can be enhanced with a substantial number of functions
from the NAG library of numerical and statistical algorithms. These functions will provide
coverage of a wide range of areas including roots of functions, Fourier transforms, quadra-
ture, differential equations, data approximation, non-linear optimization, linear algebra, ba-
sic statistics, step-wise regression, analysis of variance, time series analysis, mathematical
programming, and special functions. Contact the Numerical Algorithms Group Limited,
Oxford, England.
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0.1.3 Graphics

You may often want to visualize a symbolic formula or draw a graph from a set of numerical
values. To do this, you can call upon the Axiom graphics capability.

Draw Jo(1/22 + y2) for —20 < z,y < 20.

draw (5*besselJ(0,sqrt (x**2+y**2)), x=-20..20, y=-20..20)

Figure 1: Jo(y/22 + y?) for —20 < 2,y < 20

Graphs in Axiom are interactive objects you can manipulate with your mouse. Just click
on the graph, and a control panel pops up. Using this mouse and the control panel, you
can translate, rotate, zoom, change the coloring, lighting, shading, and perspective on the
picture. You can also generate a PostScript copy of your graph to produce hard-copy output.

0.1.4 HyperDoc

HyperDoc presents you windows on the world of Axiom, offering on-line help, examples,
tutorials, a browser, and reference material. HyperDoc gives you on-line access to this
document in a “hypertext” format. Words that appear in a different font (for example,
Matrix, factor, and category) are generally mouse-active; if you click on one with your
mouse, HyperDoc shows you a new window for that word.
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Solve Basic Conmand

would you 1ike? .
ot § Soluti d in terms of reots of
irreducible polynomials
8 ic Solutions Solutions expressed in terms of
approximate real or complex numbers
EIRacd¥al Solutions Solutions expressed in terms of radicals
if it is possible o

| Dfalculus Compute integrals, deri;rlq
| OMatrix  Create a matrix

O Jyaw Create 20 or 3B plots,

eries Create a power series

CLIC o Solve Solve an equation or system of
\ W

| EXIT

it do you want to solve?
e Of Linear Equations

sten of Polynonial Equations
J8 D04 Single Polynosial Equation
cu Ny ¢

@ Enter the Equation:

Figure 2: Hyperdoc opening menu

As another example of a HyperDoc facility, suppose that you want to compute the roots of
24 — 492* + 9 to 49 digits (as in our previous example) and you don’t know how to tell
Axiom to do this. The “basic command” facility of HyperDoc leads the way. Through the
series of HyperDoc windows shown in figure B on page @ and the specified mouse clicks, you
and HyperDoc generate the correct command to issue to compute the answer.

0.1.5 Interactive Programming

Axiom’s interactive programming language lets you define your own functions. A simple
example of a user-defined function is one that computes the successive Legendre polynomials.
Axiom lets you define these polynomials in a piece-wise way.

The first Legendre polynomial.

p(0) == 1
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Type: Void
The second Legendre polynomial.
p(1) ==x

Type: Void
The n-th Legendre polynomial for (n > 1).
pm) == ((2*n-1)*x*p(n-1) - (n-1) * p(n-2))/n

Type: Void

In addition to letting you define simple functions like this, the interactive language can be
used to create entire application packages. All the graphs in the Axiom images section were
created by programs written in the interactive language.

The above definitions for p do no computation—they simply tell Axiom how to compute
p(k) for some positive integer k.

To actually get a value of a Legendre polynomial, you ask for it.

What is the tenth Legendre polynomial?

p(10)

Compiling function p with type Integer -> Polynomial Fraction
Integer
Compiling function p as a recurrence relation.

46189 10 _ 109395 4 45045 26 15015 A 3465 L2 63
256 256 128 128 256 256

Type: Polynomial Fraction Integer

Axiom applies the above pieces for p to obtain the value of p(10). But it does more: it
creates an optimized, compiled function for p. The function is formed by putting the pieces
together into a single piece of code. By compiled, we mean that the function is translated
into basic machine-code. By optimized, we mean that certain transformations are performed
on that code to make it run faster. For p, Axiom actually translates the original definition
that is recursive (one that calls itself) to one that is iterative (one that consists of a simple
loop).

What is the coefficient of 20 in p(90)?
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coefficient (p(90),x,90)

5688265542052017822223458237426581853561497449095175
77371252455336267181195264

Type: Polynomial Fraction Integer

In general, a user function is type-analyzed and compiled on first use. Later, if you use it
with a different kind of object, the function is recompiled if necessary.

0.1.6 Data Structures

A variety of data structures are available for interactive use. These include strings, lists,
vectors, sets, multisets, and hash tables. A particularly useful structure for interactive use
is the infinite stream:

Create the infinite stream of derivatives of Legendre polynomials.
[D(p(1),x) for i imn 1..]

15 3 35 15 315 105 15
1 19 o9 9 99 3 1o ~dlo , 1Uo o 1o
,3x,2x 2,2x 23:,833 4x—|—8,

@@ﬁ_gﬁ—i—%x73003336——3465334 %332—3*5
3 4 8 716 16 16 16’
6435 - 9009 5 3465 , 315
16 16 16 16
109395 o 45045 o 45045 , 3465 , 315
128 32 64 32 128’

230945 4 109395 - 135135 , 15015 4 = 3465
xr~ — T+ xr° — r° + T,...
128 32 64 32 128

Type: Stream Polynomial Fraction Integer

Streams display only a few of their initial elements. Otherwise, they are “lazy”: they only
compute elements when you ask for them.

Data structures are an important component for building application software. Advanced
users can represent data for applications in optimal fashion. In all, Axiom offers over forty
kinds of aggregate data structures, ranging from mutable structures (such as cyclic lists and
flexible arrays) to storage efficient structures (such as bit vectors). As an example, streams
are used as the internal data structure for power series.

What is the series expansion of log(cot(x)) about z = /27
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series(log(cot(x)),x = %pi/2)

10 ﬂ +1(xff>2+l<xff)4+ﬁ(xff)6+
& 2 3 2 90 2 2835 2

127 ( 7r)8+ 146 ( 7r)10+0 ( 77)11
—— |z — = — |z — = T — =
18900 2 66825 2 2
Type: GeneralUnivariatePowerSeries(Expression Integer,x,pi/2)

Series and streams make no attempt to compute all their elements! Rather, they stand ready
to deliver elements on demand.

What is the coefficient of the 50-th term of this series?
coefficient (%,50)

44590788901016030052447242300856550965644
7131469286438669111584090881309360354581359130859375

Type: Expression Integer

0.1.7 Mathematical Structures

Axiom also has many kinds of mathematical structures. These range from simple ones (like
polynomials and matrices) to more esoteric ones (like ideals and Clifford algebras). Most
structures allow the construction of arbitrarily complicated “types.”

Even a simple input expression can result in a type with several levels.

matrix [ [x + %i,0], [1,-2] 1

x+% 0
1 -2
Type: Matrix Polynomial Complex Integer

The Axiom interpreter builds types in response to user input. Often, the type of the result
is changed in order to be applicable to an operation.

The inverse operation requires that elements of the above matrices are fractions.

inverse (%)

1
x—|—1%i

- -  _1
2 x + 2%i 2

Type: Union(Matrix Fraction Polynomial Complex Integer,...)
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0.1.8 Pattern Matching

A convenient facility for symbolic computation is “pattern matching.” Suppose you have a
trigonometric expression and you want to transform it to some equivalent form. Use a rule
command to describe the transformation rules you need. Then give the rules a name and
apply that name as a function to your trigonometric expression.

Introduce two rewrite rules.

sinCosExpandRules := rule
sin(x+y) == sin(x)*cos(y) + sin(y)*cos(x)
cos(x+y) == cos(x)*cos(y) - sin(x)*sin(y)
sin(2%x) == 2*sin(x)*cos(x)
cos(2%x) == cos(x)**2 - sin(x)**2

{sin(y + x) == cos(x)sin(y) + cos(y)sin(x),
cos(y + x) == - sin(x)sin(y) + cos(x)cos(y),
sin(2x) == 2cos(x)sin(x),

2 2
cos(2x) == - sin(x) + cos(x) }

Type: Ruleset(Integer,Integer,Expression Integer)

Apply the rules to a simple trigonometric expression.

sinCosExpandRules (sin(a+2*b+c))
(fcos (a) sin (b)* — 2 cos (b) sin (a) sin (b) 4 cos (a) cos (b)Q) sin (¢)—
cos (c) sin (a) sin (b)* + 2 cos (a) cos (b) cos (c) sin (b)+
cos (b)? cos (c) sin (a)
Type: Expression Integer

Using input files, you can create your own library of transformation rules relevant to your
applications, then selectively apply the rules you need.

0.1.9 Polymorphic Algorithms

All components of the Axiom algebra library are written in the Axiom library language. This
language is similar to the interactive language except for protocols that authors are obliged
to follow. The library language permits you to write “polymorphic algorithms,” algorithms
defined to work in their most natural settings and over a variety of types.

Define a system of polynomial equations S.
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S = [3*x**x3 + y + 1 = 0,y**2 = 4]
[y+3x3+120,y2=4]
Type: List Equation Polynomial Integer

Solve the system S using rational number arithmetic and 30 digits of accuracy.

solve(S,1/10%*30)

[y:27$:_1]

g 1757879671211184245283070414507
Y TS T 535301200456458802993406410752 |

Type: List List Equation Polynomial Fraction Integer
Solve S with the solutions expressed in radicals.

radicalSolve(S)

[[y=2,w=—1}> {y=27x= _\/?H}

y:_27x:7

R e

[y:_g ;C:\/W?’_ll [y:_Q mz_\/jl\/‘g’_lH
’ 23 | ’ 2 V3

Type: List List Equation Expression Integer

While these solutions look very different, the results were produced by the same internal
algorithm! The internal algorithm actually works with equations over any “field.” Examples
of fields are the rational numbers, floating point numbers, rational functions, power series,
and general expressions involving radicals.

0.1.10 Extensibility

Users and system developers alike can augment the Axiom library, all using one common
language. Library code, like interpreter code, is compiled into machine binary code for
run-time efficiency.

Using this language, you can create new computational types and new algorithmic packages.
All library code is polymorphic, described in terms of a database of algebraic properties.
By following the language protocols, there is an automatic, guaranteed interaction between
your code and that of colleagues and system implementers.
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A Technical Introduction

Axiom has both an interactive language for user interactions and a programming language
for building library modules. Like Modula 2, PASCAL, FORTRAN, and Ada, the program-
ming language emphasizes strict type-checking. Unlike these languages, types in Axiom are
dynamic objects: they are created at run-time in response to user commands.

Here is the idea of the Axiom programming language in a nutshell. Axiom types range
from algebraic ones (like polynomials, matrices, and power series) to data structures (like
lists, dictionaries, and input files). Types combine in any meaningful way. You can build
polynomials of matrices, matrices of polynomials of power series, hash tables with symbolic
keys and rational function entries, and so on.

Categories define algebraic properties to ensure mathematical correctness. They ensure, for
example, that matrices of polynomials are OK, but matrices of input files are not. Through
categories, programs can discover that polynomials of continued fractions have a commuta-
tive multiplication whereas polynomials of matrices do not.

Categories allow algorithms to be defined in their most natural setting. For example, an
algorithm can be defined to solve polynomial equations over any field. Likewise a great-
est common divisor can compute the “ged” of two elements from any Euclidean domain.
Categories foil attempts to compute meaningless “gcds”, for example, of two hashtables.
Categories also enable algorithms to be compiled into machine code that can be run with
arbitrary types.

The Axiom interactive language is oriented towards ease-of-use. The Axiom interpreter uses
type-inferencing to deduce the type of an object from user input. Type declarations can
generally be omitted for common types in the interactive language.

So much for the nutshell. Here are these basic ideas described by ten design principles:

0.1.11 Types are Defined by Abstract Datatype Programs

Basic types are called domains of computation, or, simply, domains. Domains are defined
by Axiom programs of the form:

Name(...): Exports == Implementation

Each domain has a capitalized Name that is used to refer to the class of its members. For ex-
ample, Integer denotes “the class of integers,” Float, “the class of floating point numbers,”
and String, “the class of strings.”

The “...” part following Name lists zero or more parameters to the constructor. Some basic
ones like Integer take no parameters. Others, like Matrix, Polynomial and List, take
a single parameter that again must be a domain. For example, Matrix(Integer) denotes
“matrices over the integers,” Polynomial (Float) denotes “polynomial with floating point
coefficients,” and List (Matrix (Polynomial (Integer))) denotes “lists of matrices of
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polynomials over the integers.” There is no restriction on the number or type of parameters
of a domain constructor.

SquareMatrix(2,Integer) is an example of a domain constructor that accepts both a particular
data value as well as an integer. In this case the number 2 specifies the number of rows and
columns the square matrix will contain. Elements of the matricies are integers.

The Exports part specifies operations for creating and manipulating objects of the domain.
For example, type Integer exports constants 0 and 1, and operations “+”, “=” and “*”.
While these operations are common, others such as odd? and bit? are not. In addition
the Exports section can contain symbols that represent properties that can be tested. For
example, the Category EntireRing has the symbol noZeroDivisors which asserts that if a
product is zero then one of the factors must be zero.

The Implementation part defines functions that implement the exported operations of the
domain. These functions are frequently described in terms of another lower-level domain
used to represent the objects of the domain. Thus the operation of adding two vectors of
real numbers can be described and implemented using the addition operation from Float.

0.1.12 The Type of Basic Objects is a Domain or Subdomain

Every Axiom object belongs to a unique domain. The domain of an object is also called its
type. Thus the integer 7 has type Integer and the string "daniel" has type String.

The type of an object, however, is not unique. The type of integer 7 is not only Integer
but NonNegativeInteger, PositiveInteger, and possibly, in general, any other “subdo-
main” of the domain Integer. A subdomain is a domain with a “membership predicate”.
PositivelInteger is a subdomain of Integer with the predicate “is the integer > 07”.

Subdomains with names are defined by abstract datatype programs similar to those for
domains. The Ezport part of a subdomain, however, must list a subset of the exports of
the domain. The Implementation part optionally gives special definitions for subdomain
objects.

0.1.13 Domains Have Types Called Categories

Domain and subdomains in Axiom are themselves objects that have types. The type of a
domain or subdomain is called a category. Categories are described by programs of the form:

Name(...): Category == Exports

The type of every category is the distinguished symbol Category. The category Name
is used to designate the class of domains of that type. For example, category Ring des-
ignates the class of all rings. Like domains, categories can take zero or more parame-
ters as indicated by the “...” part following Name. Two examples are Module(R) and
MatrixCategory(R,Row,Col).
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The Exports part defines a set of operations. For example, Ring exports the operations “0”,
“17, “47“=” "and “¥”. Many algebraic domains such as Integer and Polynomial (Float)
are rings. String and List (R) (for any domain R) are not.

Categories serve to ensure the type-correctness. The definition of matrices states Matrix (R:
Ring) requiring its single parameter R to be a ring. Thus a “matrix of polynomials” is
allowed, but “matrix of lists” is not.

Categories say nothing about representation. Domains, which are instances of category
types, specify representations.

0.1.14 Operations Can Refer To Abstract Types

All operations have prescribed source and target types. Types can be denoted by symbols
that stand for domains, called “symbolic domains.” The following lines of Axiom code use
a symbolic domain R:

R: Ring
power: (R, NonNegativeInteger): R -> R
power(x, n) == x *x n

Line 1 declares the symbol R to be a ring. Line 2 declares the type of power in terms of
R. From the definition on line 3, power(3,2) produces 9 for x = 3 and R = Integer. Also,
power(3.0,2) produces 9.0 for z = 3.0 and R = Float. power(”oxford’,2) however fails
since "oz ford” has type String which is not a ring.

Using symbolic domains, algorithms can be defined in their most natural or general setting.

0.1.15 Categories Form Hierarchies

Categories form hierarchies (technically, directed-acyclic graphs). A simplified hierarchical
world of algebraic categories is shown below. At the top of this world is SetCategory, the
class of algebraic sets. The notions of parents, ancestors, and descendants is clear. Thus
ordered sets (domains of category OrderedSet) and rings are also algebraic sets. Likewise,
fields and integral domains are rings and algebraic sets. However fields and integral domains
are not ordered sets.

SetCategory +---- Ring ---- IntegralDomain ---- Field
|
+--—- Finite -+
I \
+---- OrderedSet --———- + OrderedFinite

Figure 1. A simplified category hierarchy.
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0.1.16 Domains Belong to Categories by Assertion

A category designates a class of domains. Which domains? You might think that Ring
designates the class of all domains that export 0, 1, “+”, “=” and “x”. But this is not so.
Each domain must assert which categories it belongs to.

The Export part of the definition for Integer reads, for example:
Join(OrderedSet, IntegralDomain, ...) with ...

This definition asserts that Integer is both an ordered set and an integral domain. In fact,
Integer does not explicitly export constants 0 and 1 and operations “+”, “~” and “x” at all:
it inherits them all from Ring! Since IntegralDomain is a descendant of Ring, Integer is
therefore also a ring.

Assertions can be conditional. For example, Complex (R) defines its exports by:
Ring with ... if R has Field then Field ...

Thus Complex(Float) is a field but Complex(Integer) is not since Integer is not a field.

You may wonder: “Why not simply let the set of operations determine whether a domain
belongs to a given category?”. Axiom allows operation names (for example, norm) to have
very different meanings in different contexts. The meaning of an operation in Axiom is
determined by context. By associating operations with categories, operation names can be
reused whenever appropriate or convenient to do so. As a simple example, the operation <
might be used to denote lexicographic-comparison in an algorithm. However, it is wrong to
use the same < with this definition of absolute-value:

abs(x) ==if v <0 then — x else

Such a definition for abs in Axiom is protected by context: argument z is required to be a
member of a domain of category OrderedSet.

0.1.17 Packages Are Clusters of Polymorphic Operations

In Axiom, facilities for symbolic integration, solution of equations, and the like are placed
in “packages”. A package is a special kind of domain: one whose exported operations
depend solely on the parameters of the constructor and/or explicit domains. Packages,
unlike Domains, do not specify the representation.

If you want to use Axiom, for example, to define some algorithms for solving equations of
polynomials over an arbitrary field F', you can do so with a package of the form:

MySolve(F: Field): Exports == Implementation

where Exports specifies the solve operations you wish to export from the domain and
the Implementation defines functions for implementing your algorithms. Once Axiom has
compiled your package, your algorithms can then be used for any F: floating-point numbers,
rational numbers, complex rational functions, and power series, to name a few.
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0.1.18 The Interpreter Builds Domains Dynamically

The Axiom interpreter reads user input then builds whatever types it needs to perform the
indicated computations. For example, to create the matrix

?+1 0
M= ( 0 x/2
using the command:

M= [ [x**2+1,0],[0,x / 2] 1::Matrix(POLY(FRAC(INT)))

2
M:[erl 0}

0 x/2

Type: Matrix Polynomial Fraction Integer

the interpreter first loads the modules Matrix, Polynomial, Fraction, and Integer from
the library, then builds the domain tower “matrices of polynomials of rational numbers (i.e.
fractions of integers)”.

You can watch the loading process by first typing

)set message autoload on

In addition to the named domains above many additional domains and categories are loaded.
Most systems are preloaded with such common types. For efficiency reasons the most com-
mon domains are preloaded but most (there are more than 1100 domains, categories, and
packages) are not. Once these domains are loaded they are immediately available to the
interpreter.

Once a domain tower is built, it contains all the operations specific to the type. Computation
proceeds by calling operations that exist in the tower. For example, suppose that the user
asks to square the above matrix. To do this, the function “*” from Matrix is passed the
matrix M to compute M x M. The function is also passed an environment containing R that,
in this case, is Polynomial (Fraction (Integer)). This results in the successive calling of
the “*” operations from Polynomial, then from Fraction, and then finally from Integer.

Categories play a policing role in the building of domains. Because the argument of Matrix
is required to be a Ring, Axiom will not build nonsensical types such as “matrices of input
files”.

0.1.19 Axiom Code is Compiled

Axiom programs are statically compiled to machine code, then placed into library modules.
Categories provide an important role in obtaining efficient object code by enabling:
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e static type-checking at compile time;
e fast linkage to operations in domain-valued parameters;

e optimization techniques to be used for partially specified types (operations for “vectors
of R”, for instance, can be open-coded even though R is unknown).

0.1.20 Axiom is Extensible

Users and system implementers alike use the Axiom language to add facilities to the Axiom
library. The entire Axiom library is in fact written in the Axiom source code and available
for user modification and/or extension.

Axiom’s use of abstract datatypes clearly separates the exports of a domain (what operations
are defined) from its implementation (how the objects are represented and operations are
defined). Users of a domain can thus only create and manipulate objects through these
exported operations. This allows implementers to “remove and replace” parts of the library
safely by newly upgraded (and, we hope, correct) implementations without consequence to
its users.

Categories protect names by context, making the same names available for use in other
contexts. Categories also provide for code-economy. Algorithms can be parameterized cat-
egorically to characterize their correct and most general context. Once compiled, the same
machine code is applicable in all such contexts.

Finally, Axiom provides an automatic, guaranteed interaction between new and old code.
For example:

e if you write a new algorithm that requires a parameter to be a field, then your algorithm
will work automatically with every field defined in the system; past, present, or future.

e if you introduce a new domain constructor that produces a field, then the objects of
that domain can be used as parameters to any algorithm using field objects defined in
the system; past, present, or future.

These are the key ideas. For further information, we particularly recommend your reading
chapters 11, 12, and 13, where these ideas are explained in greater detail.

0.2 Using Axiom as a Pocket Calculator

At the simplest level Axiom can be used as a pocket calculator where expressions involving
numbers and operators are entered directly in infix notation. In this sense the more advanced
features of the calculator can be regarded as operators (e.g sin, cos, etc).
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0.2.1 Basic Arithmetic

An example of this might be to calculate the cosine of 2.45 (in radians). To do this one
would type:

(1) -> cos 2.45

—0.7702312540473073417

Type: Float

Before proceeding any further it would be best to explain the previous three lines. Firstly
the text “(1) =>” is part of the prompt that the Axiom system provides when in interactive
mode. The full prompt has other text preceding this but it is not relevant here. The number
in parenthesis is the step number of the input which may be used to refer to the results of
previous calculations. The step number appears at the start of the second line to tell you
which step the result belongs to. Since the interpreter probably loaded numberous libraries
to calculate the result given above and listed each one in the prcess, there could easily be
several pages of text between your input and the answer.

The last line contains the type of the result. The type Float is used to represent real
numbers of arbitrary size and precision (where the user is able to define how big arbitrary
is — the default is 20 digits but can be as large as your computer system can handle). The
type of the result can help track down mistakes in your input if you don’t get the answer
you expected.

Other arithmetic operations such as addition, subtraction, and multiplication behave as
expected:
6.93 *x 4.1328

28.640304

Type: Float

6.93 / 4.1328

1.6768292682926829268
Type: Float
but integer division isn’t quite so obvious. For example, if one types:

4/6
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2
3

Type: Fraction Integer

a fractional result is obtained. The function used to display fractions attempts to produce
the most readable answer. In the example:

4/2

Type: Fraction Integer

the result is stored as the fraction 2/1 but is displayed as the integer 2. This fraction
could be converted to type Integer with no loss of information but Axiom will not do so
automatically.

0.2.2 Type Conversion
To obtain the floating point value of a fraction one must convert (conversions are applied

by the user and coercions are applied automatically by the interpreter) the result to type
Float using the “::” operator as follows:

(4.6)::Float
4.6
Type: Float

Although Axiom can convert this back to a fraction it might not be the same fraction you
started with as due to rounding errors. For example, the following conversion appears to be
without error but others might not:

%::Fraction Integer

Type: Fraction Integer

where “%” represents the previous result (not the calculation).

Although Axiom has the ability to work with floating-point numbers to a very high precision
it must be remembered that calculations with these numbers are not exact. Since Axiom is
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a computer algebra package and not a numerical solutions package this should not create too
many problems. The idea is that the user should use Axiom to do all the necessary symbolic
manipulation and only at the end should actual numerical results be extracted.

If you bear in mind that Axiom appears to store expressions just as you have typed them
and does not perform any evalutation of them unless forced to then programming in the
system will be much easier. It means that anything you ask Axiom to do (within reason)
will be carried out with complete accuracy.

In the previous examples the “::” operator was used to convert values from one type to
another. This type conversion is not possible for all values. For instance, it is not possible
to convert the number 3.4 to an integer type since it can’t be represented as an integer. The
number 4.0 can be converted to an integer type since it has no fractional part.

Conversion from floating point values to integers is performed using the functions round
and truncate. The first of these rounds a floating point number to the nearest integer while
the other truncates (i.e. removes the fractional part). Both functions return the result as
a floating point number. To extract the fractional part of a floating point number use
the function fractionPart but note that the sign of the result depends on the sign of the
argument. Axiom obtains the fractional part of x using = — truncate(z):

round (3.77623)

4.0
Type: Float
round(-3.77623)
—4.0
Type: Float
truncate(9.235)
9.0
Type: Float
truncate(-9.654)
-9.0

Type: Float
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fractionPart(-3.77623)

—0.77623

Type: Float

0.2.3 Useful Functions

To obtain the absolute value of a number the abs function can be used. This takes a single
argument which is usually an integer or a floating point value but doesn’t necessarily have
to be. The sign of a value can be obtained via the sign function which rturns —1, 0, or 1
depending on the sign of the argument.

abs(4)

Type: Positivelnteger

abs(-3)

Type: Positivelnteger

abs(-34254.12314)

34254.12314

Type: Float

sign(-49543.2345346)

Type: Integer

sign(0)
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Type: NonNegativelnteger

sign(234235.42354)

Type: Positivelnteger

Tests on values can be done using various functions which are generally more efficient than
using relational operators such as = particularly if the value is a matrix. Examples of some

of these functions are:

positive?(-234)

false
Type:
negative?(-234)
true
Type:
zero? (42)
false
Type:
one?(1)
true
Type:

0dd7(23)

Boolean

Boolean

Boolean

Boolean
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0dd?(9.435)

even?(-42)

prime?(37)

prime?(-37)

Some other functions that are quite useful for manipulating numerical values are:

sin(x)
cos(x)
tan(x)
asin(x)
acos (x)
atan(x)
ged(x,y)
lem(x,y)
max (x,y)
min(x,y)
factorial (x)
factor (x)
divide(x,y)

Sine of x

Cosine of x
Tangent of x
Arcsin of x
Arccos of x

Arctangent of x

Greatest common divisor of x and y
Lowest common multiple of x and y
Maximum of x and y

Minimum of x and y

Factorial of x

Prime factors of x

true

false

true

true

false

Quotient and remainder of x/y

Type:

Type:

Type:

Type:

Type:

21

Boolean

Boolean

Boolean

Boolean

Boolean
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Some simple infix and prefix operators:

+ Addition - Subtraction

- Numerical Negation ~ Logical Negation

/\ Conjunction (AND) \/ Disjunction (OR)

and Logical AND (/\) or Logical OR (\/)

not Logical Negation *% Exponentiation

* Multiplication / Division

quo Quotient rem Remainder

< less than > greater than

<= less than or equal >= greater than or equal

Some useful Axiom macros:

hi The square root of -1

%he The base of the natural logarithm
%pi Pi

%hinfinity Infinity

%plusInfinity  Positive Infinity
JminusInfinity Negative Infinity

0.3 Using Axiom as a Symbolic Calculator

In the previous section all the examples involved numbers and simple functions. Also none of
the expressions entered were assigned to anything. In this section we will move on to simple
algebra (i.e. expressions involving symbols and other features available on more sophisticated
calculators).

0.3.1 Expressions Involving Symbols

Expressions involving symbols are entered just as they are written down, for example:

xSquared := x**2

Type: Polynomial Integer

[13 2

where the assignment operator “:=" represents immediate assignment. Later it will be seen
that this form of assignment is not always desirable and the use of the delayed assignment
operator “==" will be introduced. The type of the result is Polynomial Integer which is
used to represent polynomials with integer coefficients. Some other examples along similar

lines are:



0.3. USING AXIOM AS A SYMBOLIC CALCULATOR 23

xDummy := 3.21xx%*2
3.21 2%
Type: Polynomial Float
xDummy := x**2.5
% x
Type: Expression Float
xDummy := x**3.3
23 Wz’
Type: Expression Float
xyDummy := x**2 - y**2
—y2 4 22

Type: Polynomial Integer
Given that we can define expressions involving symbols, how do we actually compute the
result when the symbols are assigned values? The answer is to use the eval function which
takes an expression as its first argument followed by a list of assignments. For example, to
evaluate the expressions xDummy and xyDummy resulting from their respective assign-
ments above we type:
eval (xDummy ,x=3)

37.540507598529552193

Type: Expression Float

eval (xyDummy, [x=3, y=2.1])

4.59

Type: Polynomial Float
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0.3.2 Complex Numbers

For many scientific calculations real numbers aren’t sufficient and support for complex num-
bers is also required. Complex numbers are handled in an intuitive manner and Axiom,
which uses the %i macro to represent the square root of —1. Thus expressions involving
complex numbers are entered just like other expressions.

(2/3 + %i)**3

Type: Complex Fraction Integer

The real and imaginary parts of a complex number can be extracted using the real and
imag functions and the complex conjugate of a number can be obtained using conjugate:

real(3 + 2x%%i)

3
Type: Positivelnteger
imag(3+ 2x%i)
2
Type: Positivelnteger
conjugate(3 + 2%}i)
3 —2%i

Type: Complex Integer

The function factor can also be applied to complex numbers but the results aren’t quite so
obvious as for factoring integer:

144 + 24%Yi

144 + 24%i
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Type: Complex Integer

factor %

%i(1+ %i)® 3(6 + %i)
Type: Factored Complex Integer
We can see that this multiplies out to the original value by expanding the factored expression:

expand %

144 4 24%i

Type: Complex Integer

0.3.3 Number Representations

By default all numerical results are displayed in decimal with real numbers shown to 20
significant figures. If the integer part of a number is longer than 20 digits then nothing after
the decimal point is shown and the integer part is given in full. To alter the number of digits
shown the function digits can be called. The result returned by this function is the previous
setting. For example, to find the value of 7 to 40 digits we type:

digits (40)

20

Type: Positivelnteger

%pi::Float

3.1415926535 8979323846 2643383279 502884197

Type: Float

As can be seen in the example above, there is a gap after every ten digits. This can be
changed using the outputSpacing function where the argument is the number of digits
to be displayed before a space is inserted. If no spaces are desired then use the value
0. Two other functions controlling the appearance of real numbers are outputFloating
and outputFixed. The former causes Axiom to display floating-point values in exponent
notation and the latter causes it to use fixed-point notation. For example:
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outputFloating(); %

0.3141592653589793238462643383279502884197 E 1

Type: Float

outputFloating(3); 0.00345

0345 E —2
Type: Float
outputFixed(); %
0.00345
Type: Float
outputFixed(3); %
0.003
Type: Float
outputGeneral(); %
0.00345

Type: Float

W

Note that the semicolon “;” in the examples above allows several expressions to be entered
on one line. The result of the last expression is displayed. Remember also that the percent
symbol “%” is used to represent the result of a previous calculation.

To display rational numbers in a base other than 10 the function radix is used. The first
argument of this function is the expression to be displayed and the second is the base to be
used.

radix(10**10,32)

9A0NPO0
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Type: RadixExpansion 32

radix(3/21,5)

0.032412

Type: RadixExpansion 5

Rational numbers can be represented as a repeated decimal expansion using the decimal
function or as a continued fraction using continuedFraction. Any attempt to call these
functions with irrational values will fail.

decimal (22/7)

3.142857

Type: DecimalExpansion

continuedFraction(6543/210)

RN R
6 2 1 B

Type: ContinuedFraction Integer
Finally, partial fractions in compact and expanded form are available via the functions
partialFraction and padicFraction respectively. The former takes two arguments, the
first being the numerator of the fraction and the second being the denominator. The latter

function takes a fraction and expands it further while the function compactFraction does
the reverse:

partialFraction(234,40)

3,3
227 5

Type: PartialFraction Integer

padicFraction (%)
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Type: PartialFraction Integer

compactFraction(%)

3 3

6— — 4+ 2
22 + 5
Type: PartialFraction Integer

padicFraction(234/40)

117

20

Type: PartialFraction Fraction Integer

To extract parts of a partial fraction the function nthFractionalTerm is available and
returns a partial fraction of one term. To decompose this further the numerator can be
obtained using firstNumer and the denominator with firstDenom. The whole part of a
partial fraction can be retrieved using wholePart and the number of fractional parts can
be found using the function numberOfFractionalTerms:

t := partialFraction(234,40)

3 3
6— 5+
22 5
Type: PartialFraction Integer
wholePart (t)
6
Type: Positivelnteger
numberOfFractionalTerms (t)
2

Type: Positivelnteger
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p := nthFractionalTerm(t,1)

3
22
Type: PartialFraction Integer
firstNumer (p)
-3
Type: Integer
firstDenom(p)
22

Type: Factored Integer

0.3.4 Modular Arithmetic

By using the type constructor PrimeField it is possible to do arithmetic modulo some prime
number. For example, arithmetic module 7 can be performed as follows:

X : PrimeField 7 := 5

Type: PrimeField 7

x**x5 + 6

Type: PrimeField 7

1/x
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Type: PrimeField 7

The first example should be read as:
Let = be of type PrimeField(7) and assign to it the value 5

Note that it is only possible to invert non-zero values if the arithmetic is performed modulo
a prime number. Thus arithmetic modulo a non-prime integer is possible but the reciprocal
operation is undefined and will generate an error. Attempting to use the PrimeField type
constructor with a non-prime argument will generate an error. An example of non-prime
modulo arithmetic is:

y : IntegerMod 8 := 11

Type: IntegerMod 8

y*4 + 27

Type: IntegerMod 8

Note that polynomials can be constructed in a similar way:

(3*a**4 + 27xa - 36)::Polynomial PrimeField 7

3a*+6a+6

Type: Polynomial PrimeField 7

0.4 General Points about Axiom

0.4.1 Computation Without Output

It is sometimes desirable to enter an expression and prevent Axiom from displaying the result.
To do this the expression should be terminated with a semicolon “;”. In a previous section
it was mentioned that a set of expressions separated by semicolons would be evaluated and
the result of the last one displayed. Thus if a single expression is followed by a semicolon no

output will be produced (except for its type):

2 + 4x%5;

Type: Positivelnteger
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0.4.2 Accessing Earlier Results

The “%” macro represents the result of the previous computation. The “%%” macro is
available which takes a single integer argument. If the argument is positive then it refers to
the step number of the calculation where the numbering begins from one and can be seen
at the end of each prompt (the number in parentheses). If the argument is negative then it
refers to previous results counting backwards from the last result. That is, “%%(-1)” is the
same as “%”. The value of “%%(0)” is not defined and will generate an error if requested.

0.4.3 Splitting Expressions Over Several Lines

Although Axiom will quite happily accept expressions that are longer than the width of the
screen (just keep typing without pressing the Return key) it is often preferable to split the
expression being entered at a point where it would result in more readable input. To do
this the underscore “” symbol is placed before the break point and then the Return key
is pressed. The rest of the expression is typed on the next line, can be preceeded by any

number of whitespace chars, for example:

2

+

3

Type: Positivelnteger

The underscore symbol is an escape character and its presence alters the meaning of the
characters that follow it. As mentions above whitespace following an underscore is ignored
(the Return key generates a whitespace character). Any other character following an un-
derscore loses whatever special meaning it may have had. Thus one can create the identifier
“a+Db” by typing “a_+b” although this might lead to confusions. Also note the result of the
following example:

ThisIsAVeryLong_
VariableName

ThisIsAVeryLongV ariable Name

Type: Variable ThisIsAVeryLongVariableName

0.4.4 Comments and Descriptions

Comments and descriptions are really only of use in files of Axiom code but can be used
when the output of an interactive session is being spooled to a file (via the system command
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“ ”

)spool). A comment begins with two dashes “- -” and continues until the end of the line.
Multi-line comments are only possible if each individual line begins with two dashes.

Descriptions are the same as comments except that the Axiom compiler will include them
in the object files produced and make them availabe to the end user for documentation
purposes.

A description is placed before a calculation begins with three “4” signs (i.e. “+++”) and a
description placed after a calculation begins with two plus symbols (i.e.“++"). The so-called
“plus plus” comments are used within the algebra files and are processed by the compiler to
add to the documentation. The so-called “minus minus” comments are ignored everywhere.

0.4.5 Control of Result Types

@

In earlier sections the type of an expression was converted to another via the operator.
However, this is not the only method for converting between types and two other operators
need to be introduced and explained.

The first operator is “$” and is used to specify the package to be used to calculate the result.
Thus:

(2/3)$Float
0.6666666666 6666666667
Type: Float

tells Axiom to use the “/” operator from the Float package to evaluate the expression 2/3.
This does not necessarily mean that the result will be of the same type as the domain from
which the operator was taken. In the following example the sign operator is taken from the
Float package but the result is of type Integer.

sign(2.3)$Float

Type: Integer

The other operator is “@Q” which is used to tell Axiom what the desired type of the result
of the calculation is. In most situations all three operators yield the same results but the
example below should help distinguish them.

(2 + 3)::String

ll51|
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Type: String

(2 + 3)0@String

An expression involving @ String actually evaluated to one of
type Positivelnteger . Perhaps you should use :: String .

(2 + 3)$String

The function + is not implemented in String .

If an expression X is converted using one of the three operators to type T the interpretations
are:

:: means explicitly convert X to type T if possible.
$ means use the available operators for type T to compute X.

@ means choose operators to compute X so that the result is of type T.

0.5 Data Structures in Axiom

This chapter is an overview of some of the data structures provided by Axiom.

0.5.1 Lists
The Axiom List type constructor is used to create homogenous lists of finite size. The

notation for lists and the names of the functions that operate over them are similar to those
found in functional languages such as ML.

Lists can be created by placing a comma separated list of values inside square brackets or if
a list with just one element is desired then the function list is available:

[4]

Type: List Positivelnteger

list(4)
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Type: List Positivelnteger

[1’2)3,5’7,11]
[1,2,3,5,7,11]
Type: List Positivelnteger

The function append takes two lists as arguments and returns the list consisting of the
second argument appended to the first. A single element can be added to the front of a list
using cons:

append([1,2,3,5],[7,11])

[1,2,3,5,7,11]

Type: List Positivelnteger

cons (23, [65,42,19])
[23,65,42,19]
Type: List Positivelnteger

Lists are accessed sequentially so if Axiom is asked for the value of the twentieth element in
the list it will move from the start of the list over nineteen elements before it reaches the
desired element. Each element of a list is stored as a node consisting of the value of the
element and a pointer to the rest of the list. As a result the two main operations on a list
are called first and rest. Both of these functions take a second optional argument which
specifies the length of the first part of the list:

first([1,5,6,2,3])

Type: Positivelnteger

first([1,5,6,2,3],2)

[1,5]
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Type: List Positivelnteger

rest([1,5,6,2,3])

[5,6,2,3]

Type: List Positivelnteger

rest([1,5,6,2,3],2)
6,2, 3]
Type: List Positivelnteger

Other functions are empty? which tests to see if a list contains no elements, member?
which tests to see if the first argument is a member of the second, reverse which reverses
the order of the list, sort which sorts a list, and removeDuplicates which removes any
duplicates. The length of a list can be obtained using the “#” operator.

empty?([7,2,-1,2])

false
Type: Boolean
member? (-1, [7,2,-1,2]1)
true
Type: Boolean
reverse([7,2,-1,2])
[2,—1,2,ﬂ

Type: List Integer

sort([7,2,-1,2])
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[_17 27 21 7]

Type: List Integer

removeDuplicates([1,5,3,5,1,1,2])

[1,5,3,2]

Type: List Positivelnteger

#[7,2,-1,2]

Type: Positivelnteger

Lists in Axiom are mutable and so their contents (the elements and the links) can be modified
in place. Functions that operate over lists in this way have names ending in the symbol “!”.
For example, concat! takes two lists as arguments and appends the second argument to
the first (except when the first argument is an empty list) and setrest! changes the link
emanating from the first argument to point to the second argument:

u := [9,2,4,7]

[9,2,4,7]
Type: List Positivelnteger
concat!(u,[1,5,42]); u
[9,2,4,7,1,5,42]
Type: List Positivelnteger
end0fu := rest(u,4)
[1,5,42]

Type: List Positivelnteger
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part0fu := rest(u,2)

[4,7,1,5,42]

Type: List Positivelnteger

setrest! (end0fu,part0fu); u

9,2,4,7,1]

Type: List Positivelnteger

From this it can be seen that the lists returned by first and rest are pointers to the original
list and not a copy. Thus great care must be taken when dealing with lists in Axiom.

Although the nth element of the list I can be obtained by applying the first function to n—1
applications of rest to I, Axiom provides a more useful access method in the form of the “.”
operator:

u.3
4
Type: Positivelnteger
u.5
1
Type: Positivelnteger
u.6
4
Type: Positivelnteger
first rest rest u -- Same as u.3
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Type: Positivelnteger

u.first

Type: Positivelnteger

u(3)

Type: Positivelnteger

The operation u.i is referred to as indexing into u or elting into u. The latter term comes
from the elt function which is used to extract elements (the first element of the list is at
index 1).

elt(u,4)

Type: Positivelnteger

If a list has no cycles then any attempt to access an element beyond the end of the list will
generate an error. However, in the example above there was a cycle starting at the third
element so the access to the sixth element wrapped around to give the third element. Since
lists are mutable it is possible to modify elements directly:
u.3 := 42; u
[9,2,42,7,1]
Type: List Positivelnteger

Other list operations are:

L := [9,3,4,7]; #L

Type: Positivelnteger
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last (L)
7
Type: Positivelnteger
L.last
7
Type: Positivelnteger
L.(#L - 1)
4

Type: Positivelnteger

Note that using the “#” operator on a list with cycles causes Axiom to enter an infinite
loop.

Note that any operation on a list L that returns a list LL will, in general, be such that any
changes to LL will have the side-effect of altering L. For example:

m := rest(L,2)

[4,7]
Type: List Positivelnteger
m.1 :=20; L
[9,3,20,7]
Type: List Positivelnteger
n:=1L
[9,3,20,7]

Type: List Positivelnteger
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[9,99,20,7]

Type: List Positivelnteger

[9,99,20,7]

Type: List Positivelnteger

Thus the only safe way of copying lists is to copy each element from one to another and not
use the assignment operator:

p := [i for i in n] -- Same as ‘p := copy(n)’
[9,99,20,7]
Type: List Positivelnteger
p-2 :=5;p
9,5,20,7]
Type: List Positivelnteger
n
[9,99,20,7]

Type: List Positivelnteger

In the previous example a new way of constructing lists was given. This is a powerful method
which gives the reader more information about the contents of the list than before and which
is extremely flexible. The example

[i for i in 1..10]

[1,2,3,4,5,6,7,8,9,10]
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Type: List Positivelnteger

should be read as

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10]”

To generate the list of the squares of the first ten elements we just use:

[i**2 for i in 1..10]

[1,4,9,16,25,36,49, 64,81, 100]
Type: List Positivelnteger

For more complex lists we can apply a condition to the elements that are to be placed into
the list to obtain a list of even numbers between 0 and 11:

[i{ for i in 1..10 | even?(i)]

[2,4,6,8,10]
Type: List Positivelnteger
This example should be read as:

“Using the expression i, generate each element of the list by iterating the symbol i over the
range of integers [1,10] such that i is even”

The following achieves the same result:
[i for i in 2..10 by 2]

[27 47 67 8’ 10}

Type: List Positivelnteger

0.5.2 Segmented Lists

A segmented list is one in which some of the elements are ranges of values. The expand
function converts lists of this type into ordinary lists:
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[1..10]

[1..10]

Type: List Segment Positivelnteger

[1..3,5,6,8..10]

[1..3,5..5,6..6,8..10]

Type: List Segment Positivelnteger

expand (%)
[1,2,3,5,6,8,9,10
Type: List Integer

If the upper bound of a segment is omitted then a different type of segmented list is obtained
and expanding it will produce a stream (which will be considered in the next section):

[1..]

1.]

Type: List UniversalSegment PositiveInteger

expand (%)

[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Integer

0.5.3 Streams

Streams are infinite lists which have the ability to calculate the next element should it be
required. For example, a stream of positive integers and a list of prime numbers can be
generated by:

[i for i in 1..]
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[1,2,3,4,5,6,7,8,9,10,.. ]

Type: Stream Positivelnteger

[i for i in 1.. | prime?(i)]

[2,3,5,7,11,13,17,19,23,29,.. ]
Type: Stream Positivelnteger

In each case the first few elements of the stream are calculated for display purposes but the
rest of the stream remains unevaluated. The value of items in a stream are only calculated
when they are needed which gives rise to their alternative name of “lazy lists”.

Another method of creating streams is to use the generate(f,a) function. This applies its

first argument repeatedly onto its second to produce the stream [a, f(a), f(f(a)), f(f(f(a)))...].

Given that the function nextPrime returns the lowest prime number greater than its argu-
ment we can generate a stream of primes as follows:

generate (nextPrime,2)$Stream Integer

(2,3,5,7,11,13,17,19,23,29, .. ]

Type: Stream Integer

As a longer example a stream of Fibonacci numbers will be computed. The Fibonacci
numbers start at 1 and each following number is the addition of the two numbers that
precede it so the Fibonacci sequence is:

1,1,2,3,5,8,...

Since the generation of any Fibonacci number only relies on knowing the previous two num-
bers we can look at the series through a window of two elements. To create the series the
window is placed at the start over the values [1,1] and their sum obtained. The window
is now shifted to the right by one position and the sum placed into the empty slot of the
window; the process is then repeated. To implement this we require a function that takes
a list of two elements (the current view of the window), adds them, and outputs the new
window. The result is the function [a,b] => [b,a + b]:

win : List Integer -> List Integer

Type: Void
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win(x) == [x.2, x.1 + x.2]
Type: Void
win([1,11)
[1,2]
Type: List Integer
win(%)
2,3

Type: List Integer

Thus it can be seen that by repeatedly applying win to the results of the previous invocation
each element of the series is obtained. Clearly win is an ideal function to construct streams
using the generate function:

fibs := [generate(win, [1,1])]
[1,1],11,2],[2,3],[3,5], 5, 8], [8, 13], [13, 21], [21, 34], [34, 55], [55, 89], . . ]
Type: Stream List Integer

This isn’t quite what is wanted — we need to extract the first element of each list and place
that in our series:

fibs := [i.1 for i in [generate(win,[1,1]1)] ]
[1,1,2,3,5,8,13,21,34,55,.. ]
Type: Stream Integer

Obtaining the 200th Fibonacci number is trivial:

fibs.200

280571172992510140037611932413038677189525

Type: Positivelnteger

One other function of interest is complete which expands a finite stream derived from an
infinite one (and thus was still stored as an infinite stream) to form a finite stream.
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0.5.4 Arrays, Vectors, Strings, and Bits

The simplest array data structure is the one-dimensional array which can be obtained by
applying the oneDimensionalArray function to a list:

oneDimensionalArray([7,2,5,4,1,9])

[7,2,5,4,1,9]

Type: OneDimensionalArray Positivelnteger

One-dimensional arrays are homogenous (all elements must have the same type) and mutable
(elements can be changed) like lists but unlike lists they are constant in size and have uniform
access times (it is just as quick to read the last element of a one-dimensional array as it is
to read the first; this is not true for lists).

Since these arrays are mutable all the warnings that apply to lists apply to arrays. That is,
it is possible to modify an element in a copy of an array and change the original:

x := oneDimensionalArray([7,2,5,4,1,9])
[77 27 57 47 17 9]
Type: OneDimensionalArray PositiveInteger
y = x

[7,2,5,4,1,9]

Type: OneDimensionalArray Positivelnteger

[7,2,20,4,1,9]

Type: OneDimensionalArray Positivelnteger

Note that because these arrays are of fixed size the concat! function cannot be applied to
them without generating an error. If arrays of this type are required use the FlexibleArray
constructor.

One-dimensional arrays can be created using new which specifies the size of the array and
the initial value for each of the elements. Other operations that can be applied to one-
dimensional arrays are map! which applies a mapping onto each element, swap! which
swaps two elements and copyInto!(a,b,c) which copies the array b onto a starting at
position c.
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a : ARRAY1 PositiveInteger := new(10,3)
[37 37 37 37 37 37 37 37 37 3]
Type: OneDimensionalArray Positivelnteger

(note that ARRAY1 is an abbreviation for the type OneDimensionalArray.) Other types
based on one-dimensional arrays are Vector, String, and Bits.

map! (i +-> i+l,a); a
[4,4,4,4,4,4,4,4,4, 4]

Type: OneDimensionalArray PositiveIlnteger
b := oneDimensionalArray([2,3,4,5,6])

[27 3? 45 57 6]

Type: OneDimensionalArray Positivelnteger
swap! (b,2,3); b

[2,4,3,5,06]

Type: OneDimensionalArray Positivelnteger
copyInto!(a,b,3)

[4,4,2,4,3,5,6,4,4,4]

Type: OneDimensionalArray PositiveIlnteger

[47 4’ 2’ 47 37 57 6’ 4’ 47 4]

Type: OneDimensionalArray Positivelnteger

vector([1/2,1/3,1/14])
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Type: Vector Fraction Integer

"Hello, World"

"Hello, World"

Type: String

bits(8,true)

"11111111"
Type: Bits

A vector is similar to a one-dimensional array except that if its components belong to a ring
then arithmetic operations are provided.

0.5.5 Flexible Arrays

Flexible arrays are designed to provide the efficiency of one-dimensional arrays while retain-
ing the flexibility of lists. They are implemented by allocating a fixed block of storage for
the array. If the array needs to be expanded then a larger block of storage is allocated and
the contents of the old block are copied into the new one.

There are several operations that can be applied to this type, most of which modify the array
in place. As a result these functions all have names ending in “!”. The physicalLength
returns the actual length of the array as stored in memory while the physicalLength!
allows this value to be changed by the user.
f : FARRAY INT := new(6,1)

(1,1,1,1,1,1]

Type: FlexibleArray Integer

(4,3,8,1,2,1]
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insert!(42,f,3); f

insert!(28,f,8); f

removeDuplicates! (f)

delete! (f,5)

g:=f(3..5)

g.2:=7; £

4,3,42,8,1,2, 1]

[4,3,42,8,1,2,1,28]

[4,3,42,8,1,2, 28]

[4,3,42,8,2,28

42,8, 2]

[4,3,42,8,2,28

Type:

Type:

Type:

Type:

Type:

Type:

Type:

CONTENTS

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

FlexibleArray

Integer

Integer

Integer

Integer

Integer

Integer

Integer
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insert!(g,f,1)

[42,7,2,4,3,42,8,2,28]

Type: FlexibleArray Integer

physicallLength(f)

10

Type: Positivelnteger

physicallLength! (f,20)

[42,7,2,4,3,42,8,2, 28]

Type: FlexibleArray Integer

merge! (sort! (f),sort!(g))

[2,2,2,3,4,7,7,8,28,42, 42, 42]

Type: FlexibleArray Integer

shrinkable(false)$FlexibleArray(Integer)

true

Type: Boolean

There are several things to point out concerning these examples. First, although flexible
arrays are mutable, making copies of these arrays creates separate entities. This can be seen
by the fact that the modification of element g.2 above did not alter f. Second, the merge!
function can take an extra argument before the two arrays are merged. The argument is a
comparison function and defaults to “<=" if omitted. Lastly, shrinkable tells the system
whether or not to let flexible arrays contract when elements are deleted from them. An
explicit package reference must be given as in the example above.
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0.6 Functions, Choices, and Loops

By now the reader should be able to construct simple one-line expressions involving variables
and different data structures. This section builds on this knowledge and shows how to use
iteration, make choices, and build functions in Axiom. At the moment it is assumed that the
reader has a rough idea of how types are specified and constructed so that they can follow
the examples given.

From this point on most examples will be taken from input files.

0.6.1 Reading Code from a File

Input files contain code that will be fed to the command prompt. The primary difference
between the command line and an input file is that indentation matters. In an input file you
can specify “piles” of code by using indentation.

4

The names of all input files in Axiom should end in “.input” otherwise Axiom will refuse to

read them.

If an input file is named foo.input you can feed the contents of the file to the command
prompt (as though you typed them) by writing: )read foo.input.

It is good practice to start each input file with the )clear all command so that all functions
and variables in the current environment are erased.

0.6.2 Blocks

The Axiom constructs that provide looping, choices, and user-defined functions all rely on
the notion of blocks. A block is a sequence of expressions which are evaluated in the order
that they appear except when it is modified by control expressions such as loops. To leave a
block prematurely use an expression of the form: BoolExpr => Expr where BoolExpr is any
Axiom expression that has type Boolean. The value and type of Expr determines the value
and type returned by the block.

If blocks are entered at the keyboard (as opposed to reading them from a text file) then
there is only one way of creating them. The syntax is:

(expressionl; expression?;. . .;expressionN)

In an input file a block can be constructed as above or by placing all the statements at the
same indentation level. When indentation is used to indicate program structure the block
is called a pile. As an example of a simple block a list of three integers can be constructed
using parentheses:

( a:=4; b:=1; c:=9; L:=[a,b,c])

[4,1,9]
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Type: List Positivelnteger

Doing the same thing using piles in an input file you could type:

L :=
a:=4
b:=
c:=9
[a,b,c]

[4,1,9]
Type: List Positivelnteger

Since blocks have a type and a value they can be used as arguments to functions or as part of
other expressions. It should be pointed out that the following example is not recommended
practice but helps to illustrate the idea of blocks and their ability to return values:

sqrt(4.0 +

O o0 o e
1

2.8284271247 461900976

Type: Float

Note that indentation is extremely important. If the example above had the pile starting
at “a:=" moved left by two spaces so that the “a” was under the “(” of the first line then
the interpreter would signal an error. Furthermore if the closing parenthesis “)” is moved
up to give

sqrt (4.0 +
a:=3.0
b:=1.0
c:=a + b
c)

Line 1: sqrt(4.0 +
..A

Error A: Missing mate.

Line

Line

N

»
]

w

.0
b:=1.0

w
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Line
Line

Error
Error
Error
Error

SIS

W w =

B:

Cc:

c)

=a + b

(from A up to B) Ignored.
Improper syntax.

syntax error at top level
Possibly missing a )

5 error(s) parsing

CONTENTS

then the parser will generate errors. If the parenthesis is shifted right by several spaces so
that it is in line with the “c” thus:

sqrt(4.0

Line

Error
Line
Line
Line
Line
Line

Error
Error
Error
Error

+

o O WN =

= = e

A:

~ 0 0O T e

w
+ O© O

[

»

: sqrt(4.0 +
.. A

Missing mate.

a:

~ 0 0O T

=3.0

:=1.0
:=a + b

(from A up to A) Ignored.
Improper syntax.

syntax error at top level
Possibly missing a )

5 error(s) parsing

a similar error will be raised. Finally, the “)” must be indented by at least one space relative

to the sqrt thus:

sqrt (4.0

+
a
b:
c
c

w
+ O O

[y

m

2.8284271247 461900976
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Type: Float

or an error will be generated.

It can be seen that great care needs to be taken when constructing input files consisting
of piles of expressions. It would seem prudent to add one pile at a time and check if it
is acceptable before adding more, particularly if piles are nested. However, it should be
pointed out that the use of piles as values for functions is not very readable and so perhaps
the delicate nature of their interpretation should deter programmers from using them in
these situations. Using piles should really be restricted to constructing functions, etc. and
a small amount of rewriting can remove the need to use them as arguments. For example,
the previous block could easily be implemented as:

a:=3.0
b:=1.0
c:=a + Db

sqrt(4.0 + ¢)

a:=3.0
3.0
Type: Float
b:=1.0
1.0
Type: Float
c:=a + b
4.0

Type: Float

sqrt (4.0 + ¢)
2.8284271247 461900976
Type: Float

which achieves the same result and is easier to understand. Note that this is still a pile but
it is not as fragile as the previous version.



54 CONTENTS

0.6.3 Functions

Definitions of functions in Axiom are quite simple providing two things are observed. First,
the type of the function must either be completely specified or completely unspecified. Sec-
ond, the body of the function is assigned to the function identifier using the delayed assign-

ment operator “==".

W

To specify the type of something the operator is used. Thus to define a variable x to be

of type Fraction Integer we enter:

x : Fraction Integer

Type: Void

For functions the method is the same except that the arguments are placed in parentheses
and the return type is placed after the symbol “~>”. Some examples of function definitions
taking zero, one, two, or three arguments and returning a list of integers are:

f : () -> List Integer

Type: Void
g : (Integer) -> List Integer

Type: Void
h : (Integer, Integer) -> List Integer

Type: Void
k : (Integer, Integer, Integer) -> List Integer

Type: Void

Now the actual function definitions might be:

£fO =[]
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Type: Void
g(a) == [a]

Type: Void
h(a,b) == [a,b]

Type: Void
k(a,b,c) == [a,b,c]

Type: Void

with some invocations of these functions:

£O

Compiling function f with type () -> List Integer

[]

Type: List Integer

g(4)

Compiling function g with type Integer -> List Integer
[4]

Type: List Integer

h(2,9)

Compiling function h with type (Integer,Integer) -> List Integer
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[2,9]

Type: List Integer

k(-3,42,100)

Compiling function k with type (Integer,Integer,Integer) -> List
Integer

[—3,42,100]
Type: List Integer

The value returned by a function is either the value of the last expression evaluated or the
result of a return statement. For example, the following are effectively the same:

p : Integer -> Integer

Type: Void
p x == (a:=1; b:=2; atb+x)

Type: Void
p x == (a:=1; b:=2; return(atb+x))

Type: Void

Note that a block (pile) is assigned to the function identifier p and thus all the rules about
blocks apply to function definitions. Also there was only one argument so the parenthese
are not needed.

This is basically all that one needs to know about defining functions in Axiom — first specify
the complete type and then assign a block to the function name. The rest of this section
is concerned with defining more complex blocks than those in this section and as a result
function definitions will crop up continually particularly since they are a good way of testing
examples. Since the block structure is more complex we will use the pile notation and thus
have to use input files to read the piles.
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0.6.4 Choices

Apart from the “=>" operator that allows a block to exit before the end Axiom provides the
standard if-then-else construct. The general syntax is:

if BooleanExpr then Exprl else Expr2

where “else Expr2” can be omitted. If the expression BooleanExpr evaluates to true then
Exprl is executed otherwise Expr2 (if present) will be executed. An example of piles and
if-then-else is: (read from an input file)

h := 2.0
if h > 3.1 then
1.0
else

z:= cos(h)
max(x,0.5)

h := 2.0
2.0
Type: Float
if h > 3.1 then
1.0
else
z:= cos(h)
max(x,0.5)
x

Type: Polynomial Float

Note the indentation — the “else” must be indented relative to the “if” otherwise it will
generate an error (Axiom will think there are two piles, the second one beginning with
“else”).

Any expression that has type Boolean can be used as BooleanExpr and the most common
will be those involving the relational operators “>", “<”, and “=”. Usually the type of an
expression involving the equality operator “=" will be Boolean but in those situations when
it isn’t you may need to use the “@Q” operator to ensure that it is.

0.6.5 Loops

Loops in Axiom are regarded as expressions containing another expression called the loop
body. The loop body is executed zero or more times depending on the kind of loop. Loops
can be nested to any depth.
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The repeat loop

The simplest kind of loop provided by Axiom is the repeat loop. The general syntax of this
is:

repeat loopBody

This will cause Axiom to execute loopBody repeatedly until either a break or return
statement is encountered. If loopBody contains neither of these statements then it will loop
forever. The following piece of code will display the numbers from 1 to 4:

i:=1

repeat
if i > 4 then break
output (i)
i:=i+1

Type: Positivelnteger

repeat
if 1 > 4 then break
output (i)
i:=i+l

S wWw N -

Type: Void

It was mentioned that loops will only be left when either a break or return statement is
encountered so why can’t one use the “=>” operator? The reason is that the “=>" operator
tells Axiom to leave the current block whereas break leaves the current loop. The return
statement leaves the current function.

To skip the rest of a loop body and continue the next iteration of the loop use the iterate
statement (the -- starts a comment in Axiom)

i::=0
repeat
i=1+1
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if i > 6 then break

—— Return to start if i is odd
if 0dd?(i) then iterate
output (i)

Type: NonNegativelnteger

repeat
i=1i+1
if i > 6 then break
-- Return to start if i is odd
if odd?(i) then iterate
output (i)

2
4
6

Type: Void

The while loop

The while statement extends the basic repeat loop to place the control of leaving the loop
at the start rather than have it buried in the middle. Since the body of the loop is still part
of a repeat loop, break and “=>” work in the same way as in the previous section. The
general syntax of a while loop is:

while BoolExpr repeat loopBody

As before, BoolExpr must be an expression of type Boolean. Before the body of the loop is
executed BoolExpr is tested. If it evaluates to true then the loop body is entered otherwise
the loop is terminated. Multiple conditions can be applied using the logical operators such
as and or by using several while statements before the repeat.

<
1]
—

while x < 4 and y < 10 repeat
output [x,y]
x :=x +1
y =y + 2
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x:=1
y:=1

while x < 4 and y < 10 repeat
output [x,y]
x:=x+1
y =y +2

[1,1]
[2,3]
(3,5]

We could use two parallel whiles

x:=1

y:=1

while x < 4 while y < 10 repeat
output [x,y]
x:=x+1
y =y +2

the )read yields:

x:=1

Type:

Type:

Type:

CONTENTS

Positivelnteger

Positivelnteger

Type: Void

Positivelnteger
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Type: Positivelnteger

while x < 4 while y < 10 repeat
output [x,y]
x:=x+1
y =y +2

[1,1]
[2,3]
[3,5]

Type: Void

Note that the last example using two while statements is not a nested loop but the following

one is:

x:=1
y:=1
while x < 4 repeat
while y < 10 repeat
output [x,y]
x :=x +1
y =y + 2

Type: Positivelnteger

Type: Positivelnteger

while x < 4 repeat
while y < 10 repeat
output [x,y]
x=x+1
y =y + 2

[1,1]
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[2,3]
[3,5]
[4,7]
[5,9]

Type: Void

Suppose we that, given a matrix of arbitrary size, find the position and value of the first
negative element by examining the matrix in row-major order:

m := matrix [ [ 21, 37, 53, 14 ],_
[ 8, 22,-24, 16 ], _
[ 2, 10, 15, 14 1],_
[ 26, 33, 55,-13 ] ]

lastrow := nrows(m)
lastcol := ncols(m)
r :=1
while r <= lastrow repeat
c := 1 -- Index of first column

while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further
c:=c+1
r :=r +1

m :=matrix [ [ 21, 37, 53, 14 1,_
[ 8, 22,-24, 16 ], _
[ 2, 10, 15, 14 1],_
[ 26, 33, 55,-13 ] 1]

21 37 53 14
8§ 22 -24 16

2 10 15 14
26 33 55 —13

Type: Matrix Integer

lastrow := nrows(m)

Type: Positivelnteger
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lastcol := ncols(m)

while r <= lastrow repeat
c := 1 —- Index of first column
while ¢ <= lastcol repeat
if elt(m,r,c) < O then
output [r,c,elt(m,r,c)]
r := lastrow
break -- Don’t look any further
c:=c+1
r:=r +1

[2,3,- 24]

The for loop

63

Type: Positivelnteger

Type: Positivelnteger

Type: Void

The last loop statement of interest is the for loop. There are two ways of creating a for

loop. The first way uses either a list or a segment:

for var in seg repeat loopBody
for var in list repeat loopBody

where var is an index variable which is iterated over the values in seg or list. The value seg
is a segment such as 1...10 or 1... and Iist is a list of some type. For example:

for i in 1..10 repeat
“prime?(i) => iterate
output (i)

~N o w N
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Type: Void
for w in ["This", "is", "your", "life!"] repeat
output (w)
This
is

your
life!

Type: Void

The second form of the for loop syntax includes a “such that” clause which must be of
type Boolean:

for var in seg | BoolExpr repeat loopBody
for var in list | BoolExpr repeat loopBody

Some examples are:

for i in 1..10 | prime?(i) repeat

output (i)
2
3
5
7
Type: Void
for i in [1,2,3,4,5,6,7,8,9,10] | prime?(i) repeat
output (i)
2
3
5
7
Type: Void

You can also use a while clause:
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for i in 1.. while i < 7 repeat
if even?(i) then output(i)

2
4
6
Type:
Using the “such that” clause makes this appear simpler:
for i in 1.. | even?(i) while i < 7 repeat
output (1)
2
4
6
Type:
You can use multiple for clauses to iterate over several sequences in parallel:
for a in 1..4 for b in 5..8 repeat
output [a,b]
[1,5]
[2,6]
[3,7]
[4,8]
Type:

65

Void

Void

Void

As a general point it should be noted that any symbols referred to in the “such that” and
while clauses must be pre-defined. This either means that the symbols must have been
defined in an outer level (e.g. in an enclosing loop) or in a for clause appearing before the

“such that” or while. For example:

for a in 1..4 repeat
for b in 7..9 | prime?(a+b) repeat
output [a,b,a+b]

[2,9,11]
[3,8,11]
[4,7,11]
[4,9,13]
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Type: Void
Finally, the for statement has a by clause to specify the step size. This makes it possible to
iterate over the segment in reverse order:

for a in 1..4 for b in 8..5 by -1 repeat
output [a,b]

[1,8]
[2,7]
[3,6]
[4,5]

Type: Void

Note that without the “by -1” the segment 8..5 is empty so there is nothing to iterate over
and the loop exits immediately.



Chapter 1

An Overview of Axiom

When we start cataloging the gains in tools sitting on a computer, the benefits
of software are amazing. But, if the benefits of software are so great, why do
we worry about making it easier — don’t the ends pay for the means? We worry
becuase making such software is extraordinarily hard and almost no one can do it
— the detail is exhausting, the creativity required is extreme, the hours of failure
upon failure requiring patience and persistence would tax anyone claiming to be
sane. Yet we require people with such characteristics be found and employed and
employed cheaply.

— Christopher Alexander
(from Patterns of Software by Richard Gabriel)

Welcome to the Axiom environment for interactive computation and problem solving. Con-
sider this chapter a brief, whirlwind tour of the Axiom world. We introduce you to Axiom’s
graphics and the Axiom language. Then we give a sampling of the large variety of facili-
ties in the Axiom system, ranging from the various kinds of numbers, to data types (like
lists, arrays, and sets) and mathematical objects (like matrices, integrals, and differential
equations). We conclude with the discussion of system commands and an interactive “undo.”

Before embarking on the tour, we need to brief those readers working interactively with
Axiom on some details.

1.1 Starting Up and Winding Down

You need to know how to start the Axiom system and how to stop it. We assume that Axiom
has been correctly installed on your machine (as described in another Axiom document).

To begin using Axiom, issue the command axiom to the Axiom operating system shell.
There is a brief pause, some start-up messages, and then one or more windows appear.

67
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If you are not running Axiom under the X Window System, there is only one window (the
console). At the lower left of the screen there is a prompt that looks like

(1) —>

When you want to enter input to Axiom, you do so on the same line after the prompt.
The “1” in “(1)”, also called the equation number, is the computation step number and is
incremented after you enter Axiom statements. Note, however, that a system command such
as )clear all may change the step number in other ways. We talk about step numbers
more when we discuss system commands and the workspace history facility.

If you are running Axiom under the X Window System, there may be two windows: the
console window (as just described) and the HyperDoc main menu. HyperDoc is a multiple-
window hypertext system that lets you view Axiom documentation and examples on-line,
execute Axiom expressions, and generate graphics. If you are in a graphical windowing
environment, it is usually started automatically when Axiom begins. If it is not running,
issue )hd to start it. We discuss the basics of HyperDoc in section B on page [G4.

To interrupt an Axiom computation, hold down the Ctrl (control) key and press c. This
brings you back to the Axiom prompt.

To exit from Axiom, move to the console window, type )quit at the input
prompt and press the Enter key. You will probably be prompted with the
following message:

Please enter y or yes if you really want to leave the
interactive environment and return to the operating system

You should respond yes, for example, to exit Axiom.

We are purposely vague in describing exactly what your screen looks like or what messages
Axiom displays. Axiom runs on a number of different machines, operating systems and
window environments, and these differences all affect the physical look of the system. You
can also change the way that Axiom behaves via system commands described later in this
chapter and in Appendix A. System commands are special commands, like ) set, that begin
with a closing parenthesis and are used to change your environment. For example, you can
set a system variable so that you are not prompted for confirmation when you want to leave
Axiom.

1.1.1 Clef

If you are using Axiom under the X Window System, the Clef command line editor is
probably available and installed. With this editor you can recall previous lines with the up
and down arrow keys. To move forward and backward on a line, use the right and left arrows.
You can use the Insert key to toggle insert mode on or off. When you are in insert mode,
the cursor appears as a large block and if you type anything, the characters are inserted into
the line without deleting the previous ones.
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If you press the Home key, the cursor moves to the beginning of the line and if you press
the End key, the cursor moves to the end of the line. Pressing Ctrl-End deletes all the text
from the cursor to the end of the line.

Clef also provides Axiom operation name completion for a limited set of operations. If you
enter a few letters and then press the Tab key, Clef tries to use those letters as the prefix of
an Axiom operation name. If a name appears and it is not what you want, press Tab again
to see another name.

You are ready to begin your journey into the world of Axiom.

1.2 Typographic Conventions
In this document we have followed these typographical conventions:

e (Categories, domains and packages are displayed in this font: Ring, Integer, DiophantineSolutionPackage.

e Prefix operators, infix operators, and punctuation symbols in the Axiom language are
displayed in the text like this: +, §, +->.

e Axiom expressions or expression fragments are displayed in this font:
inc(x) == x + 1.

e For clarity of presentation, TEX is often used to format expressions
g(z) =2+ 1.

e Function names and HyperDoc button names are displayed in the text in this font:
factor, integrate, Lighting.

e Italics are used for emphasis and for words defined in the glossary:
category.

This document contains over 2500 examples of Axiom input and output. All examples were
run though Axiom and their output was created in TEX form by the Axiom TexFormat
package. We have deleted system messages from the example output if those messages are
not important for the discussions in which the examples appear.

1.3 The Axiom Language

The Axiom language is a rich language for performing interactive computations and for
building components of the Axiom library. Here we present only some basic aspects of
the language that you need to know for the rest of this chapter. Our discussion here is
intentionally informal, with details unveiled on an “as needed” basis. For more information
on a particular construct, we suggest you consult the index.
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1.3.1 Arithmetic Expressions

For arithmetic expressions, use the “+” and “-” operator as in mathematics. Use “*” for
multiplication, and “**” for exponentiation. To create a fraction, use “/”. When an expres-
sion contains several operators, those of highest precedence are evaluated first. For arithmetic
operators, “**” has highest precedence, “*” and “/” have the next highest precedence, and
“+” and “-” have the lowest precedence.

Axiom puts implicit parentheses around operations of higher precedence, and groups those
of equal precedence from left to right.

1 +2-3/4%3 %x2 -1

19
4
Type: Fraction Integer
The above expression is equivalent to this.
(A +2) - ((B/ 4) = (3*2))) -1
19
4

Type: Fraction Integer

If an expression contains subexpressions enclosed in parentheses, the parenthesized subex-
pressions are evaluated first (from left to right, from inside out).

1 +2-3/ (4 %3 *x (2 -1))

Type: Fraction Integer

1.3.2 Previous Results

Use the percent sign “%” to refer to the last result. Also, use “%%’ to refer to previous
results. “%%(-1)” is equivalent to “%”, “%%(-2)” returns the next to the last result, and so
on. “%%(1)” returns the result from step number 1, “%%(2)” returns the result from step
number 2, and so on. “%%(0)” is not defined.

This is ten to the tenth power.

10 **x 10
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This is the last result minus one.

% -1

This is the last result.

hh(=1)

This is the result from step number 1.

hh (1)

1.3.3 Some Types

10000000000

9999999999

9999999999

10000000000

Type:

Type:

Type:

Type:
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Positivelnteger

Positivelnteger

Positivelnteger

Positivelnteger

Everything in Axiom has a type. The type determines what operations you can perform on
an object and how the object can be used. The section B on page 23 is dedicated to the
interactive use of types. Several of the final chapters discuss how types are built and how
they are organized in the Axiom library.

Positive integers are given type Positivelnteger.

8

Type:

Positivelnteger

Negative ones are given type Integer. This fine distinction is helpful to the Axiom inter-

preter.
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Type: Integer

Here a positive integer exponent gives a polynomial result.

X**8

Type: Polynomial Integer

Here a negative integer exponent produces a fraction.

x*% (-8)

Type: Fraction Polynomial Integer

1.3.4 Symbols, Variables, Assignments, and Declarations

A symbol is a literal used for the input of things like the “variables” in polynomials and
power series.

We use the three symbols z, y, and z in entering this polynomial.
(x = y*xz)*x*2

y? 22 —2zxy 2+’

Type: Polynomial Integer

A symbol has a name beginning with an uppercase or lowercase alphabetic character, “%”,
or “!”. Successive characters (if any) can be any of the above, digits, or “?”. Case is
distinguished: the symbol points is different from the symbol Points.

A symbol can also be used in Axiom as a wvariable. A variable refers to a value. To assign
a value to a variable, the operator “:=" is used.! A variable initially has no restrictions on
the kinds of values to which it can refer.

This assignment gives the value 4 (an integer) to a variable named z.

LAxiom actually has two forms of assignment: immediate assignment, as discussed here, and delayed
assignment. See section Bl on page [CX3 for details.
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Type: Positivelnteger
This gives the value z 4+ 3/5 (a polynomial) to x.
x :=z + 3/5
z+ <
Type: Polynomial Fraction Integer

To restrict the types of objects that can be assigned to a variable, use a declaration

y : Integer

Type: Void

After a variable is declared to be of some type, only values of that type can be assigned to
that variable.

y := 89
89
Type: Integer

The declaration for y forces values assigned to y to be converted to integer values.

y := sin Ypi

Type: Integer

If no such conversion is possible, Axiom refuses to assign a value to y.

y = 2/3
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Cannot convert right-hand side of assignment
2

3

to an object of the type Integer of the left-hand side.

A type declaration can also be given together with an assignment. The declaration can assist
Axiom in choosing the correct operations to apply.

f : Float := 2/3
0.6666666666 6666666667
Type: Float

Any number of expressions can be given on input line. Just separate them by semicolons.
Only the result of evaluating the last expression is displayed.

These two expressions have the same effect as the previous single expression.
f : Float; f := 2/3
0.6666666666 6666666667
Type: Float

The type of a symbol is either Symbol or Variable(name) where name is the name of the
symbol.

By default, the interpreter gives this symbol the type Variable(q).

q

Type: Variable q
When multiple symbols are involved, Symbol is used.
[q, r]

q,7]

Type: List OrderedVariableList [q,r]
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What happens when you try to use a symbol that is the name of a variable?
f
0.6666666666 6666666667
Type: Float
Use a single quote “’” before the name to get the symbol.

’f

Type: Variable f

Quoting a name creates a symbol by preventing evaluation of the name as a variable. Expe-
rience will teach you when you are most likely going to need to use a quote. We try to point
out the location of such trouble spots.

1.3.5 Conversion

Objects of one type can usually be “converted” to objects of several other types. To convert
an object to a new type, use the “::” infix operator.? For example, to display an object, it
is necessary to convert the object to type OutputForm.

This produces a polynomial with rational number coefficients.

p = r**x2 + 2/3

2
2 p—
r+3

Type: Polynomial Fraction Integer

Create a quotient of polynomials with integer coefficients by using “::”.

p :: Fraction Polynomial Integer

3r242
3

Type: Fraction Polynomial Integer

Some conversions can be performed automatically when Axiom tries to evaluate your input.
Others conversions must be explicitly requested.

2Conversion is discussed in detail in section I on page [ZS.
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1.3.6 Calling Functions

As we saw earlier, when you want to add or subtract two values, you place the arithmetic
operator “+” or “-” between the two arguments denoting the values. To use most other
Axiom operations, however, you use another syntax: write the name of the operation first,
then an open parenthesis, then each of the arguments separated by commas, and, finally, a
closing parenthesis. If the operation takes only one argument and the argument is a number
or a symbol, you can omit the parentheses.

This calls the operation factor with the single integer argument 120.
factor(120)
2°35
Type: Factored Integer
This is a call to divide with the two integer arguments 125 and 7.
divide(125,7)
[quotient = 17, remainder = 6]
Type: Record(quotient: Integer, remainder: Integer)

This calls quatern with four floating-point arguments.
quatern(3.4,5.6,2.9,0.1)
34456i+295+0.1k
Type: Quaternion Float
This is the same as factorial(10).
factorial 10
3628800

Type: Positivelnteger

An operations that returns a Boolean value (that is, true or false) frequently has a name
suffixed with a question mark (“?”). For example, the even? operation returns true if its
integer argument is an even number, false otherwise.
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An operation that can be destructive on one or more arguments usually has a name ending
in a exclamation point (“!”). This actually means that it is allowed to update its arguments
but it is not required to do so. For example, the underlying representation of a collection type
may not allow the very last element to removed and so an empty object may be returned
instead. Therefore, it is important that you use the object returned by the operation and not
rely on a physical change having occurred within the object. Usually, destructive operations
are provided for efficiency reasons.

1.3.7 Some Predefined Macros

Axiom provides several macros for your convenience.® Macros are names (or forms) that
expand to larger expressions for commonly used values.

%i The square root of -1.

%e The base of the natural logarithm.
%pi .

infinity 00.

%plusInfinity +00.

%minusInfinity —oo.

To display all the macros (along with anything you have defined in the workspace), issue the
system command )display all.

1.3.8 Long Lines

When you enter Axiom expressions from your keyboard, there will be times when they are
too long to fit on one line. Axiom does not care how long your lines are, so you can let them
continue from the right margin to the left side of the next line.

Alternatively, you may want to enter several shorter lines and have Axiom glue them together.
To get this glue, put an underscore (_) at the end of each line you wish to continue.

is the same as if you had entered
2+3

Axiom statements in an input file (see section B on page [C73) can use indentation to indicate
the program structure. (see section 52 on page [Z9).

3See section B2 on page ZZ2 for a discussion on how to write your own macros.
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1.3.9 Comments

Comment statements begin with two consecutive hyphens or two consecutive plus signs and
continue until the end of the line.

b2

The comment beginning with “--" is ignored by Axiom.

2 + 3 —- this is rather simple, no?

Type: Positivelnteger

7

There is no way to write long multi-line comments other than starting each line with “--
or LL++77 .

1.4 Numbers

Axiom distinguishes very carefully between different kinds of numbers, how they are repre-
sented and what their properties are. Here are a sampling of some of these kinds of numbers
and some things you can do with them.

Integer arithmetic is always exact.

11%%13 * 13%x11 * 17%*%7 - 19%x5 * 23%*3
25387751112538918594666224484237298
Type: Positivelnteger
Integers can be represented in factored form.
factor 643238070748569023720594412551704344145570763243
111 131 177 19° 233 292
Type: Factored Integer

Results stay factored when you do arithmetic. Note that the 12 is automatically factored
for you.

% *x 12

22 31113 13 177 195 233 292
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Type: Factored Integer
Integers can also be displayed to bases other than 10. This is an integer in base 11.
radix (25937424601,11)
10000000000
Type: RadixExpansion 11
Roman numerals are also available for those special occasions.
roman(1992)
MCMXCII
Type: RomanNumeral
Rational number arithmetic is also exact.
r :=10 + 9/2 + 8/3 + 7/4 + 6/5 + 5/6 + 4/7 + 3/8 + 2/9

55739
2520

Type: Fraction Integer
To factor fractions, you have to map factor onto the numerator and denominator.
map (factor,r)

139 401
283257

Type: Fraction Factored Integer

SingleInteger refers to machine word-length integers.

In English, this expression means “11 as a small integer”.
11@SinglelInteger

11

Type: Singlelnteger
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Machine double-precision floating-point numbers are also available for numeric and graphical
applications.

123.21@DoubleFloat

123.21000000000001

Type: DoubleFloat

The normal floating-point type in Axiom, Float, is a software implementation of floating-
point numbers in which the exponent and the mantissa may have any number of digits. The
types Complex(Float) and Complex(DoubleFloat) are the corresponding software imple-
mentations of complex floating-point numbers.

7))

This is a floating-point approximation to about twenty digits. The is used here to
change from one kind of object (here, a rational number) to another (a floating-point num-
ber).

r :: Float
22.118650793650793651
Type: Float

Use digits to change the number of digits in the representation. This operation returns the
previous value so you can reset it later.

digits(22)
20
Type: Positivelnteger
To 22 digits of precision, the number emV163.0 appears to be an integer.
exp(%pi * sqrt 163.0)
262537412640768744.0

Type: Float

Increase the precision to forty digits and try again.

digits(40); exp(%pi * sqrt 163.0)
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26253741 2640768743.9999999999 9925007259 76
Type: Float

Here are complex numbers with rational numbers as real and imaginary parts.
(2/3 + %i)#*=3

46 1Ly
——=+ =
271 3
Type: Complex Fraction Integer

The standard operations on complex numbers are available.

conjugate %

Type: Complex Fraction Integer

You can factor complex integers.
factor(89 - 23 * %i)
—(1+1) (2+14)* (3+24)°
Type: Factored Complex Integer
Complex numbers with floating point parts are also available.
exp(%pi/4.0 * %i)

0.7071067811 8654752440 0844362104 8490392849+
0.7071067811 8654752440 0844362104 8490392848 1

Type: Complex Float

The real and imaginary parts can be symbolic.

complex(u,v)

u+v1
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Type: Complex Polynomial Integer
Of course, you can do complex arithmetic with these also.
% *%x 2
v +ut+2uvi
Type: Complex Polynomial Integer

Every rational number has an exact representation as a repeating decimal expansion

decimal (1/352)

0.0028409

Type: DecimalExpansion
A rational number can also be expressed as a continued fraction.
continuedFraction(6543/210)

T R (R
TR

Type: ContinuedFraction Integer
Also, partial fractions can be used and can be displayed in a compact format

partialFraction(1l,factorial(10))

Type: PartialFraction Integer

or expanded format.
padicFraction(%)

1+1+1+1+1+1 2 1 2 2 2+1
2 24 25 26 2T 28 32 3 3 5 52 7

Type: PartialFraction Integer
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Like integers, bases (radices) other than ten can be used for rational numbers. Here we use
base eight.

radix(4/7, 8)

Type: RadixExpansion 8

Of course, there are complex versions of these as well. Axiom decides to make the result a
complex rational number.

%+ 2/3%%i

RIS
wl o

Type: Complex Fraction Integer

You can also use Axiom to manipulate fractional powers.

(5 + sqrt 63 + sqrt 847)**(1/3)

14V7+5

Type: AlgebraicNumber

You can also compute with integers modulo a prime.

x : PrimeField 7 := 5

Type: PrimeField 7

Arithmetic is then done modulo 7.

X*k*3

Type: PrimeField 7

Since 7 is prime, you can invert nonzero values.
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1/x

Type: PrimeField 7

You can also compute modulo an integer that is not a prime.

y : IntegerMod 6 := 5

Type: IntegerMod 6

All of the usual arithmetic operations are available.

y*k*3

Type: IntegerMod 6

Inversion is not available if the modulus is not a prime number. Modular arithmetic and
prime fields are discussed in section BT on page BF.

1/y

There are 12 exposed and 13 unexposed library operations named /
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op /
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named /
with argument type(s)
Positivelnteger
IntegerMod 6

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

This defines a to be an algebraic number, that is, a root of a polynomial equation.
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a := rootOf (a**5 + a*x*x3 + a**2 + 3,a)

Type: Expression Integer

Computations with a are reduced according to the polynomial equation.
(a + 1)**10
—85 a* — 264 a® — 378 a® — 458 a — 287

Type: Expression Integer

Define b to be an algebraic number involving a.

b := root0f (b**4 + a,b)

Type: Expression Integer

Do some arithmetic.

2/(b - 1)

Type: Expression Integer

To expand and simplify this, call ratDenom to rationalize the denominator.
ratDenom (%)
(a4—a3—|—2a2—a+1) b?’—|—(a4—a3—|—2a2—a+1) b2+
(a4—a3+2a2—a+1) b+a'—a*+2a*>—a+1

Type: Expression Integer

If we do this, we should get b.

2/%+1
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a*—a®+2a>—a+1) b ( a3+2a2—a—|—1)b2—|—

b+a —a*+2d>—a+3
(a —a®+2ad? —a—i—l) b2+

(
a*—a*+2a>—a+1
(
(a4—a3—|—2a2—a+1
(

a4—a3+2a2—a+1)b+a —a*+2d>—a+1
Type: Expression Integer
But we need to rationalize the denominator again.

ratDenom (%)

Type: Expression Integer

Types Quaternion and Octonion are also available. Multiplication of quaternions is non-
commutative, as expected.

q:=quatern(1,2,3,4)*quatern(5,6,7,8) - quatern(5,6,7,8)*quatern(1,2,3,4)

—8i+16j—8k

Type: Quaternion Integer

1.5 Data Structures

Axiom has a large variety of data structures available. Many data structures are particularly
useful for interactive computation and others are useful for building applications. The data
structures of Axiom are organized into category hierarchies.

A list ™ is the most commonly used data structure in Axiom for holding objects all of the
same type. The name [list is short for “linked-list of nodes.” Each node consists of a value
(first) and a link (rest) that points to the next node, or to a distinguished value denoting
the empty list. To get to, say, the third element, Axiom starts at the front of the list, then
traverses across two links to the third node.

Write a list of elements using square brackets with commas separating the elements.

u := [1,-7,11]

AList on page BEZ3
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[1,-7,11]
Type: List Integer

This is the value at the third node. Alternatively, you can say u.3.

first rest rest u

11

Type: Positivelnteger

Many operations are defined on lists, such as: empty?, to test that a list has no elements;
cons(z,1), to create a new list with first element x and rest [; reverse, to create a new list
with elements in reverse order; and sort, to arrange elements in order.

An important point about lists is that they are “mutable”: their constituent elements and
links can be changed “in place.” To do this, use any of the operations whose names end with
the character “!”.

The operation concat!(u,v) replaces the last link of the list u to point to some other list v.
Since u refers to the original list, this change is seen by wu.

concat! (u,[9,1,3,-41); u
[1,-7,11,9,1,3,—4]
Type: List Integer

A cyclic list is a list with a “cycle”: a link pointing back to an earlier node of the list. To
create a cycle, first get a node somewhere down the list.

lastnode := rest(u,3)
9,1,3,—4]
Type: List Integer

Use setrest! to change the link emanating from that node to point back to an earlier part
of the list.

setrest!(lastnode,rest(u,2)); u
[1,-7,11,9]
Type: List Integer

A stream is a structure that (potentially) has an infinite number of distinct elements. Think
of a stream as an “infinite list” where elements are computed successively. ©

5Stream ECRR on page KM



88 CHAPTER 1. AN OVERVIEW OF AXIOM

Create an infinite stream of factored integers. Only a certain number of initial elements are
computed and displayed.

[factor(i) for i in 2.. by 2]

2,2%,23,2%,25,223,27,2%,23%,2% 5,.. |
Type: Stream Factored Integer

Axiom represents streams by a collection of already-computed elements together with a
function to compute the next element “on demand.” Asking for the n-th element causes
elements 1 through n to be evaluated.

%.36
2% 3
Type: Factored Integer

Streams can also be finite or cyclic. They are implemented by a linked list structure similar
to lists and have many of the same operations. For example, first and rest are used to
access elements and successive nodes of a stream.

A one-dimensional array is another data structure used to hold objects of the same type 5.
Unlike lists, one-dimensional arrays are inflexible—they are implemented using a fixed block
of storage. Their advantage is that they give quick and equal access time to any element.

A simple way to create a one-dimensional array is to apply the operation oneDimension-
alArray to a list of elements.

a := oneDimensionalArray [1, -7, 3, 3/2]

3
1. — b
[, 7,3,2]

Type: OneDimensionalArray Fraction Integer

One-dimensional arrays are also mutable: you can change their constituent elements “in
place.”

a.3 := 11; a

S0neDimensionalArray BG3 on page 19
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Type: OneDimensionalArray Fraction Integer

However, one-dimensional arrays are not flexible structures. You cannot destructively con-
cat! them together.

concat! (a,oneDimensionalArray [1,-2])

There are 5 exposed and O unexposed library operations named concat!
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op concat!
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the arguments
will allow you to apply the operation.

Cannot find a definition or applicable library operation named
concat! with argument type(s)
OneDimensionalArray Fraction Integer
OneDimensionalArray Integer

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Examples of datatypes similar to OneDimensionalArray are: Vector (vectors are mathe-
matical structures implemented by one-dimensional arrays), String (arrays of “characters,”
represented by byte vectors), and Bits (represented by “bit vectors”).

A vector of 32 bits, each representing the Boolean value true.

bits(32,true)

"11111111111111111111131111311111"
Type: Bits

A flexible array® is a cross between a list and a one-dimensional array. Like a one-dimensional
array, a flexible array occupies a fixed block of storage. Its block of storage, however, has
room to expand. When it gets full, it grows (a new, larger block of storage is allocated);
when it has too much room, it contracts.

Create a flexible array of three elements.

f := flexibleArray [2, 7, -5]

"FlexibleArray B30 on page
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[27 73 _5]
Type: FlexibleArray Integer

Insert some elements between the second and third elements.
insert!(flexibleArray [11, -3],f,2)
[2,11,-3,7,-5]
Type: FlexibleArray Integer

Flexible arrays are used to implement “heaps.” A heap ¥ is an example of a data struc-
ture called a priority queue, where elements are ordered with respect to one another. A
heap is organized so as to optimize insertion and extraction of maximum elements. The
extract! operation returns the maximum element of the heap, after destructively removing
that element and reorganizing the heap so that the next maximum element is ready to be
delivered.

An easy way to create a heap is to apply the operation heap to a list of values.
h := heap [-4,7,11,3,4,-7]
[11,4,7,—4,3,=7]
Type: Heap Integer

This loop extracts elements one-at-a-time from h until the heap is exhausted, returning the
elements as a list in the order they were extracted.

[extract!(h) while not empty?(h)]

[11,7,4,3,—4, 7]
Type: List Integer

A binary tree is a “tree” with at most two branches per node: it is either empty, or else
is a node consisting of a value, and a left and right subtree (again, binary trees). Ex-
amples of binary tree types are BinarySearchTree, PendantTree, TournamentTree, and
BalancedBinaryTree.

A binary search tree is a binary tree such that, for each node, the value of the node is greater
than all values (if any) in the left subtree, and less than or equal all values (if any) in the
right subtree. ®

8Heap B33 on page
9BinarySearchTree B on page EG3
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binarySearchTree [5,3,2,9,4,7,11]

[2,3,4],5,[7,9, 11]]

Type: BinarySearchTree PositiveInteger

A balanced binary tree is useful for doing modular computations. ™ Given a list Im of
moduli, modTree(a,lm) produces a balanced binary tree with the values a mod m at its
leaves.

modTree(8,[2,3,5,7])
[0,2,3,1]
Type: List Integer

A set is a collection of elements where duplication and order is irrelevant. ™ Sets are always
finite and have no corresponding structure like streams for infinite collections.

Create sets using braces “{“ and “}” rather than brackets.

fs := set [1/3,4/5,-1/3,4/5]

Type: Set Fraction Integer

A multiset is a set that keeps track of the number of duplicate values. =

For all the primes p between 2 and 1000, find the distribution of p mod 5.
multiset [x rem 5 for x in primes(2,1000)]
{0,42: 3,40: 1,38: 4,47: 2}
Type: Multiset Integer

A table is conceptually a set of “key—value” pairs and is a generalization of a multiset.
For examples of tables, see AssociationList, HashTable, KeyedAccessFile, Library,
SparseTable, StringTable, and Table. The domain Table(Key, Entry) provides a general-
purpose type for tables with values of type Entry indexed by keys of type Key.

Compute the above distribution of primes using tables. First, let ¢ denote an empty table of
keys and values, each of type Integer.

10BalancedBinaryTree B on page EX2
11set B2 on page 93
2Multiset on page
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t : Table(Integer,Integer) := empty()

table()

Type: Table(Integer,Integer)

We define a function howMany to return the number of values of a given modulus & seen
so far. It calls search(k,t) which returns the number of values stored under the key k in
table ¢, or ‘ ‘failed’’ if no such value is yet stored in ¢ under k.

In English, this says “Define howMany(k) as follows. First, let n be the value of search(k,t).
Then, if n has the value ” failed”, return the value 1; otherwise return n + 1.”

howMany (k) == (n:=search(k,t); n case "failed" => 1; n+l1)

Type: Void

Run through the primes to create the table, then print the table. The expression t.m :=
howMany (m) updates the value in table ¢ stored under key m.

for p in primes(2,1000) repeat (m:= p rem 5; t.m:= howMany(m)); t

Compiling function howMany with type Integer -> Integer
table (2 = 47,4 = 38,1 =40,3 =42,0=1)
Type: Table(Integer,Integer)

A record is an example of an inhomogeneous collection of objects.™ A record consists of a
set of named selectors that can be used to access its components.

Declare that daniel can only be assigned a record with two prescribed fields.

daniel : Record(age : Integer, salary : Float)

Type: Void

Give daniel a value, using square brackets to enclose the values of the fields.

daniel := [28, 32005.12]

[age = 28, salary = 32005.12]

13See section 4 on page 3R for details.
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Type: Record(age: Integer,salary: Float)

Give daniel a raise.

daniel.salary := 35000; daniel

[age = 28, salary = 35000.0]

Type: Record(age: Integer,salary: Float)

A union is a data structure used when objects have multiple types.™

Let dog be either an integer or a string value.

dog: Union(licenseNumber: Integer, name: String)

Type: Void

Give dog a name.
dog := "Whisper"
"Whisper"
Type: Union(name: String,...)

All told, there are over forty different data structures in Axiom. Using the domain construc-
tors described in section 3 on page B39, you can add your own data structure or extend
an existing one. Choosing the right data structure for your application may be the key to
obtaining good performance.

1.6 Expanding to Higher Dimensions

To get higher dimensional aggregates, you can create one-dimensional aggregates with el-
ements that are themselves aggregates, for example, lists of lists, one-dimensional arrays
of lists of multisets, and so on. For applications requiring two-dimensional homogeneous
aggregates, you will likely find two-dimensional arrays and matrices most useful.

The entries in TwoDimensionalArray and Matrix objects are all the same type, except
that those for Matrix must belong to a Ring. You create and access elements in roughly
the same way. Since matrices have an understood algebraic structure, certain algebraic

14See section I3 on page IZ2A for details.
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operations are available for matrices but not for arrays. Because of this, we limit our dis-
cussion here to Matrix, that can be regarded as an extension of TwoDimensionalArray.
See TwoDimensionalArray for more information about arrays. For more information about
Axiom’s linear algebra facilities, see Matrix on page [0, Permanent U771 on page [£34,
SquareMatrix IR on page B, Vector on page Bd7, TwoDimensionalArray B94 on
page B30, section B4 on page (computation of eigenvalues and eigenvectors), and sec-
tion B on page (solution of linear and polynomial equations).

You can create a matrix from a list of lists, where each of the inner lists represents a row of
the matrix.

m := matrix([ [1,2], [3,4] 1)

IS\
[

Type: Matrix Integer

The “collections” construct (see section B33 on page PT2) is useful for creating matrices whose
entries are given by formulas.

matrix([ [1/(1 + j - x) for i in 1..4] for j in 1..4])

. 1 1 __1
r—2 r—3 r—4 r—5
- 1 1 _ 1
r—3 r—4 r—5 r—6
- 1 _ 1 1
r—4 r—5 r—6 =7
- . r _ 1 1
r—5 z—6 z—T7 z—8

Type: Matrix Fraction Polynomial Integer

Let vm denote the three by three Vandermonde matrix.

vm := matrix [ [1,1,1], [x,y,z], [x*x,y*y,z*z] ]
1 1 1
T Yy 2z
22 2 22

Type: Matrix Polynomial Integer

Use this syntax to extract an entry in the matrix.

vm(3,3)
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Type: Polynomial Integer
You can also pull out a row or a column.

column(vm,2)

[1,9,9°]

Type: Vector Polynomial Integer
You can do arithmetic.
vm * vm

224z +1 v +y+1 224241
P 2tzyta v2z+yi+ar  Z2ryzta
P2 r4a? 224422 A2 st a?

Type: Matrix Polynomial Integer

You can perform operations such as transpose, trace, and determinant.

factor determinant vm

(y—=) (z-y) (z—2)

Type: Factored Polynomial Integer

1.7 Writing Your Own Functions

Axiom provides you with a very large library of predefined operations and objects to compute
with. You can use the Axiom library of constructors to create new objects dynamically of
quite arbitrary complexity. For example, you can make lists of matrices of fractions of
polynomials with complex floating point numbers as coefficients. Moreover, the library
provides a wealth of operations that allow you to create and manipulate these objects.

For many applications, you need to interact with the interpreter and write some Axiom
programs to tackle your application. Axiom allows you to write functions interactively,
thereby effectively extending the system library. Here we give a few simple examples, leaving
the details to section B on page 2Z1I.

We begin by looking at several ways that you can define the “factorial” function in Axiom.
The first way is to give a piece-wise definition of the function. This method is best for a
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general recurrence relation since the pieces are gathered together and compiled into an effi-
cient iterative function. Furthermore, enough previously computed values are automatically
saved so that a subsequent call to the function can pick up from where it left off.

Define the value of fact at 0.

fact(0) ==

Type: Void
Define the value of fact(n) for general n.
fact(n) == nxfact(n-1)

Type: Void

Ask for the value at 50. The resulting function created by Axiom computes the value by
iteration.

fact (50)

Compiling function fact with type Integer -> Integer
Compiling function fact as a recurrence relation.

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

A second definition uses an if-then-else and recursion.

fac(n) == if n < 3 then n else n * fac(n - 1)

Type: Void

This function is less efficient than the previous version since each iteration involves a recursive
function call.

fac(50)

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger
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A third version directly uses iteration.

fa(n) == (a := 1; for i in 2..n repeat a := axi; a)

Type: Void

This is the least space-consumptive version.

fa(50)

Compiling function fac with type Integer -> Integer

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

A final version appears to construct a large list and then reduces over it with multiplication.

f(n) == reduce(x,[i for i in 2..n])

Type: Void

In fact, the resulting computation is optimized into an efficient iteration loop equivalent to
that of the third version.

£(50)

Compiling function f with type
PositiveInteger -> Positivelnteger

30414093201713378043612608166064768844377641568960512000000000000

Type: Positivelnteger

The library version uses an algorithm that is different from the four above because it highly
optimizes the recurrence relation definition of factorial.

factorial (50)

30414093201713378043612608166064768844377641568960512000000000000
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Type: Positivelnteger

You are not limited to one-line functions in Axiom. If you place your function definitions
in .input files (see section B on page ), you can have multi-line functions that use
indentation for grouping.

Given n elements, diagonalMatrix creates an n by n matrix with those elements down the
diagonal. This function uses a permutation matrix that interchanges the ith and jth rows
of a matrix by which it is right-multiplied.

This function definition shows a style of definition that can be used in .input files. Indenta-
tion is used to create blocks: sequences of expressions that are evaluated in sequence except
as modified by control statements such as if-then-else and return.

permMat(n, i, j) ==
m := diagonalMatrix
[(if i = k or j = k then 0 else 1)
for k in 1..n]

m(i,j) :=1
m(j,i) =1
m

This creates a four by four matrix that interchanges the second and third rows.

p := permMat(4,2,3)

Compiling function permMat with type (PositiveInteger,
PositivelInteger,PositiveInteger) -> Matrix Integer

1 0 00
0 010
01 00
0 0 01
Type: Matrix Integer
Create an example matrix to permute.
m := matrix [ [4*i + j for j in 1..4] for i in 0..3]
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Type: Matrix Integer
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Interchange the second and third rows of m.

permMat(4,2,3) * m

1 2 3 4
9 10 11 12
5 6 7 8
13 14 15 16

Type: Matrix Integer

A function can also be passed as an argument to another function, which then applies the
function or passes it off to some other function that does. You often have to declare the type
of a function that has functional arguments.

This declares t to be a two-argument function that returns a Float. The first argument is
a function that takes one Float argument and returns a Float.

t : (Float —> Float, Float) -> Float

Type: Void
This is the definition of t.

t(fun, x) == fun(x)**2 + sin(x)**2

Type: Void
We have not defined a cos in the workspace. The one from the Axiom library will do.
t(cos, 5.2058)

1.0

Type: Float

Here we define our own (user-defined) function.

cosinv(y) == cos(1/y)

Type: Void
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Pass this function as an argument to t.

t(cosinv, 5.2058)

1.7392237241 8005164925 4147684772 932520785

Type: Float

Axiom also has pattern matching capabilities for simplification of expressions and for defining
new functions by rules. For example, suppose that you want to apply regularly a transfor-
mation that groups together products of radicals:

Vavb s Vab, (Ya)(vb)

Note that such a transformation is not generally correct. Axiom never uses it automatically.

Give this rule the name groupSqrt.

groupSqrt := rule(sqrt(a) * sqrt(b) == sqrt(a*b))

%C va Vo== %C Va b

Type: RewriteRule(Integer,Integer,Expression Integer)

Here is a test expression.
a := (sqrt(x) + sqrt(y) + sqrt(z))*x*4

(4z4+4y+122) Jy+ (@A z+12y+4 ) Vo) Vot

(12z+4y+da) Vo Jy+22+6y+6z)2+y* +62y+a°

Type: Expression Integer

The rule groupSqrt successfully simplifies the expression.
groupSqrt a

dz+d4y+122)Vyz+ (@ z+12y+4z) Vo =+

(12z44y+da) Jry+22+6y+62)24+9y°+6xy+a?

Type: Expression Integer
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1.8 Polynomials

Polynomials are the commonly used algebraic types in symbolic computation. Interactive
users of Axiom generally only see one type of polynomial: Polynomial (R). This type repre-
sents polynomials in any number of unspecified variables over a particular coefficient domain
R. This type represents its coefficients sparsely: only terms with non-zero coefficients are
represented.

In building applications, many other kinds of polynomial representations are useful. Polyno-
mials may have one variable or multiple variables, the variables can be named or unnamed,
the coeflicients can be stored sparsely or densely. So-called “distributed multivariate poly-
nomials” store polynomials as coefficients paired with vectors of exponents. This type is
particularly efficient for use in algorithms for solving systems of non-linear polynomial equa-
tions.

The polynomial constructor most familiar to the interactive user is Polynomial.
(x*%2 — x*ky**3 +3%y)**2
22y —6zyt—222 3 +9 9% +6 22 y+ a2t
Type: Polynomial Integer

If you wish to restrict the variables used, UnivariatePolynomial provides polynomials in
one variable.

p: UP(x,INT) := (3*%x-1)**2 *x (2*x + 8)
18 2% 4+ 60 2 — 46 z + 8
Type: UnivariatePolynomial(x,Integer)

The constructor MultivariatePolynomial provides polynomials in one or more specified
variables.

m: MPOLY([x,y],INT) := (x**2-xky*x3+3%y)**2

m4—2y3m3+(y6+6y) 2 -6yt +99y°

Type: MultivariatePolynomial([x,y],Integer)

You can change the way the polynomial appears by modifying the variable ordering in the
explicit list.

m :: MPOLY([y,x],INT)
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2?2 yf —6xyt =223 3+ 99y +6 2% y+a?
Type: MultivariatePolynomial([y,x],Integer)

The constructor DistributedMultivariatePolynomial provides polynomials in one or more
specified variables with the monomials ordered lexicographically.

m :: DMP([y,x],INT)
yG 1’276y4x—2y3 x3+9y2+6y1:2+:z:4
Type: DistributedMultivariatePolynomial([y,x],Integer)

The constructor HomogeneousDistributedMultivariatePolynomial is similar except that
the monomials are ordered by total order refined by reverse lexicographic order.

m :: HDMP([y,x],INT)
Wat—2y3 et —6yta+at+6ya?+9y°
Type: HomogeneousDistributedMultivariatePolynomial([y,x],Integer)

More generally, the domain constructor GeneralDistributedMultivariatePolynomial al-
lows the user to provide an arbitrary predicate to define his own term ordering. These last
three constructors are typically used in Grobner basis applications and when a flat (that is,
non-recursive) display is wanted and the term ordering is critical for controlling the compu-
tation.

1.9 Limits

Axiom’s limit function is usually used to evaluate limits of quotients where the numerator
and denominator both tend to zero or both tend to infinity. To find the limit of an expression
f as a real variable x tends to a limit value a, enter 1imit (f, x=a). Use complexLimit if
the variable is complex. Additional information and examples of limits are in section E@ on
page BE4.

You can take limits of functions with parameters.
g := csc(a*x) / csch(b*x)

csc (a x)
csch (b x)

Type: Expression Integer
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As you can see, the limit is expressed in terms of the parameters.
limit(g,x=0)
b
a
Type: Union(OrderedCompletion Expression Integer,...)

A variable may also approach plus or minus infinity:
h := (1 + k/x)**xx

z+k”

Type: Expression Integer

Use %plusInfinity and %minusInfinity to denote co and —oo.

limit(h,x=YplusInfinity)

Type: Union(OrderedCompletion Expression Integer,...)

A function can be defined on both sides of a particular value, but may tend to different limits
as its variable approaches that value from the left and from the right.

limit (sqrt(y**2)/y,y = 0)

[leftHandLimit = —1, right HandLimit = 1]

Type: Union(Record(leftHandLimit: Union(OrderedCompletion Expression
Integer,"failed") ,rightHandLimit: Union(OrderedCompletion Expression
Integer,"failed")),...)

As x approaches 0 along the real axis, exp(-1/x**2) tends to 0.

limit (exp(-1/x**2),x = 0)

Type: Union(OrderedCompletion Expression Integer,...)
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However, if x is allowed to approach 0 along any path in the complex plane, the limiting
value of exp(-1/x**2) depends on the path taken because the function has an essential
singularity at = 0. This is reflected in the error message returned by the function.

complexLimit (exp(-1/x**2),x = 0)

"failed"

Type: Union("failed",...)

1.10 Series

Axiom also provides power series. By default, Axiom tries to compute and display the
first ten elements of a series. Use )set streams calculate to change the default value to
something else. For the purposes of this document, we have used this system command to
display fewer than ten terms. For more information about working with series, see section B9
on page B78.

You can convert a functional expression to a power series by using the operation series. In
this example, sin(a*x) is expanded in powers of (z — 0), that is, in powers of z.

series(sin(a*x),x = 0)

a3 5 a® 5 a’? . a® 0 all
ar——2z + — ' + T =
6 120 5040 362880 39916800

2"+ 0 (m12)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

This expression expands sin(a*x) in powers of (x - %pi/4).

series(sin(a*x),x = %pi/4)

sin(%)+acos( 47r) (xfg —
ﬁ R IR
i)zt el (.
d Sl;120 ( %)6 - CE(:;ZL(O%) ($_£)7+
8 9
a 2151320 ( D +m(x_1) -

10 a m

) (- 1) o (- D))
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Type: UnivariatePuiseuxSeries(Expression Integer,x,pi/4)
Axiom provides Puiseuz series: series with rational number exponents. The first argument

to series is an in-place function that computes the n-th coeflicient. (Recall that the “+->”
is an infix operator meaning “maps to.”)

series(n +-> (-1)**x((3*%n - 4)/6)/factorial(n - 1/3),x=0,4/3..,2)

Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Once you have created a power series, you can perform arithmetic operations on that series.
We compute the Taylor expansion of 1/(1 — x).

f := series(1/(1-x),x = 0)
l+az+a®+2° +a' +2° + 2%+ 2" + 28+ 27 + 2%+ O (2")
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
Compute the square of the series.
£ ¥k 2
142243224422 4+52 4625 +725+82"+928+102% +11 a:lo—l—O(xll)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

The usual elementary functions (log, exp, trigonometric functions, and so on) are defined
for power series.

f := series(1/(1-x),x = 0)
ltz+a2>+2° +a* +2° +2%+ 27 + 2% + 27 + 20+ O (21)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)
g := log(f)

1,2,1,3,1,4, 1,5, 1,6, 1,7
r+zx°+zgx+g+sa°+5200+5 2+

]‘ 8 ]‘9 ]‘ 10 ]' 11 12
- - - - o
gPtg e e +0(EY)
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Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

exp(g)
1+w+x2+x3+x4+x5+x6+x7+m8+x9+x10—|—0(1‘11)
Type: UnivariatePuiseuxSeries(Expression Integer,x,0)

Here is a way to obtain numerical approximations of e from the Taylor series expansion of
exp(x). First create the desired Taylor expansion.

f := taylor(exp(x))
1 1 . 1 1 = 1
1 Z 2 - .3 -4 1 - .6
R e A Y R TT Ao R

1 8 1 9 1 10 11
- o)
10320 © " 362880 © * 36zmm00 & T O )

1
5040 ©

"+

Type: UnivariateTaylorSeries(Expression Integer,x,0)

Evaluate the series at the value 1.0. As you see, you get a sequence of partial sums.
eval(f,1.0)

[1.0,2.0,2.5,2.6666666666666666667,
2.7083333333333333333, 2.7166666666666666667
2.7180555555555555556, 2.718253968253968254,
2.7182787698412698413, 2.7182815255731922399, ... |

Type: Stream Expression Float

1.11 Derivatives

Use the Axiom function D to differentiate an expression.

To find the derivative of an expression f with respect to a variable z, enter D(f, x).

f := exp exp x
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Type: Expression Integer

D(f, x)

Type: Expression Integer

An optional third argument n in D asks Axiom for the n-th derivative of f. This finds the
fourth derivative of f with respect to x.

D(f, x, 4)
(em4 +6 e +7e" + ez> e’
Type: Expression Integer
You can also compute partial derivatives by specifying the order of differentiation.
g := sin(x**2 + y)
sin (y + x2)

Type: Expression Integer

D(g, y)

COS (y + xz)

Type: Expression Integer

D(g, [y, y, x, x1)
4 z? sin (y + x2) — 2 cos (y + x2)
Type: Expression Integer

Axiom can manipulate the derivatives (partial and iterated) of expressions involving formal
operators. All the dependencies must be explicit.

This returns 0 since F (so far) does not explicitly depend on z.
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D(F,x)

Type: Polynomial Integer

Suppose that we have F a function of x, y, and z, where = and y are themselves functions
of z.

Start by declaring that F', x, and y are operators.

F := operator ’F; x := operator ’x; y := operator ’y

Type: BasicOperator
You can use F, z, and y in expressions.
a :=F(x z, yz, zk¥2) + x y(z+1)
vy (z+1))+F(2(2),y(2),2%)
Type: Expression Integer

Differentiate formally with respect to z. The formal derivatives appearing in dadz are not
just formal symbols, but do represent the derivatives of z, y, and F.

dadz := D(a, z)
22 Fs(2(2),y(2),2%) +y (2) Fa(z(2),y(2),2%)+

v (2) Fa(z(2),y(2),2%) + 20 (y (2 + 1)y (2 + 1)

Type: Expression Integer

You can evaluate the above for particular functional values of F, x, and y. If z(2) is exp(z)
and y(z) is log(z+1), then evaluates dadz.

eval(eval(dadz, ’x, z +-> exp z), ’y, z +-> log(z+1))
(222 422) Fs(e®,log(z+1),2%)+
Fs (€%, 1og (2 + 1), 2%)+

(z41) e Fy(e*,log(z+1),2%) +z+1
z+1
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Type: Expression Integer

You obtain the same result by first evaluating a and then differentiating.

eval(eval(a, ’x, z +-> exp z), 'y, z +-> log(z+1))

F(e*log(z+1),2%) +2+2

Type: Expression Integer

D(%, z)

(2 2242 z) Fg (ez,log(z + 1),22)+
F, (ez,log (z+ 1),22)+

(z+1) e* Fy (e*,log (2 +1),2%) + 2z +1
z+1

Type: Expression Integer

1.12 Integration

Axiom has extensive library facilities for integration.

The first example is the integration of a fraction with denominator that factors into a
quadratic and a quartic irreducible polynomial. The usual partial fraction approach used by
most other computer algebra systems either fails or introduces expensive unneeded algebraic
numbers.

We use a factorization-free algorithm.

integrate ((x**2+2*x+1) / ((x+1) **6+1) ,x)

arctan (:1:3 +32243z+ 1)
3

Type: Union(Expression Integer,...)

When real parameters are present, the form of the integral can depend on the signs of some
expressions.

Rather than query the user or make sign assumptions, Axiom returns all possible answers.
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integrate(1/(x**2 + a),x)

a

2v—a T Va

2?2—a) vV—a+2 a z
log (( ):v2+a > arctan (x ‘/a)

Type: Union(List Expression Integer,...)

The integrate operation generally assumes that all parameters are real. The only exception
is when the integrand has complex valued quantities.

If the parameter is complex instead of real, then the notion of sign is undefined and there is
a unique answer. You can request this answer by “prepending” the word “complex” to the
command name:

complexIntegrate (1/(x**2 + a),x)

log (24225 o (=422
2v-a

Type: Expression Integer

The following two examples illustrate the limitations of table-based approaches. The two
integrands are very similar, but the answer to one of them requires the addition of two new
algebraic numbers.

This one is the easy one. The next one looks very similar but the answer is much more
complicated.

integrate (x**3 / (a+b*x)**(1/3),x)

(12003 23 — 135 a b? 22 + 162 a® b — 243 a®) oo +a°
440 b

Type: Union(Expression Integer,...)

Only an algorithmic approach is guaranteed to find what new constants must be added in
order to find a solution.

integrate(1 / (x**3 * (a+b*x)**(1/3)),x)
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—2 b2 22 \/§log<€/a rta + a \B/bx+a+a)+
4 b% 22 \/glog(\s/c;2 \B/bx—i—a—a)—l—

3 2 3/
12b2:1:2zamctan<2\/§\/a ;x+a+a\/§>+
a

(12bz—9a)\/§\3/a\3/bx—|—a2
18 a2 22 /3 ¥a

Type: Union(Expression Integer,...)

Some computer algebra systems use heuristics or table-driven approaches to integration.
When these systems cannot determine the answer to an integration problem, they reply
“I don’t know.” Axiom uses an algorithm which is a decision procedure for integration.
If Axiom returns the original integral that conclusively proves that an integral cannot be
expressed in terms of elementary functions.

When Axiom returns an integral sign, it has proved that no answer exists as an elementary
function.

integrate(log(1l + sqrt(a*x + b)) / x,x)

d%Q

T log (m—l— 1)
[ —

Type: Union(Expression Integer,...)

Axiom can handle complicated mixed functions much beyond what you can find in tables.

Whenever possible, Axiom tries to express the answer using the functions present in the
integrand.

integrate ((sinh(1+sqrt (x+b))+2*sqrt (x+b)) / (sqrt(x+b) * (x + cosh(l+sqrt(x
+ b)), x

-2 Cosh(\/x+b+ 1) -2z
2 log —2vVx+b
sinh (\/a:—i-b—l—l) — cosh (vx—i—b—l—l)

Type: Union(Expression Integer,...)

A strong structure-checking algorithm in Axiom finds hidden algebraic relationships between
functions.



112 CHAPTER 1. AN OVERVIEW OF AXIOM

integrate(tan(atan(x)/3),x)
2 2
arctan(z) arctan(z)
8 log <3 tan <73 ) — 1> — 3 tan (73 ) +

18 = tan <arctan (J:))

3

18

Type: Union(Expression Integer,...)

The discovery of this algebraic relationship is necessary for correct integration of this func-
tion. Here are the details:

1. If x = tant and g = tan(¢/3) then the following algebraic relation is true:
¢>—3xg*> —3g+1x=0

2. Integrate g using this algebraic relation; this produces:

(24g% — 8)log(3g% — 1) + (8122 + 24)g* + 7229 — 2722 — 16
542 — 18

3. Rationalize the denominator, producing:
8log(3g? — 1) — 3¢9 + 18zg + 16
18
Replace g by the initial definition g = tan(arctan(z)/3) to produce the final result.

This is an example of a mixed function where the algebraic layer is over the transcendental
one.

integrate((x + 1) / (xx(x + log x) ** (3/2)), x)

2 y/log (z) +x

log () +

Type: Union(Expression Integer,...)

While incomplete for non-elementary functions, Axiom can handle some of them.

integrate(exp(~x**2) * erf(x) / (erf(x)**3 - erf(x)**2 - erf(x) + 1),x)

(exf (z) — 1) /7 log (ggg;;) 2T
8 erf (z) — 8

Type: Union(Expression Integer,...)

More examples of Axiom’s integration capabilities are discussed in section B8 on page BZ2.
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1.13 Differential Equations

The general approach used in integration also carries over to the solution of linear differential
equations.

Let’s solve some differential equations. Let y be the unknown function in terms of x.

y := operator ’y

Type: BasicOperator

Here we solve a third order equation with polynomial coefficients.

deq := x**3 * D(y x, x, 3) + x*x*2 *x D(y x, x, 2) - 2 * x * D(y x, x) + 2 * y
X = 2 % x¥x4

oy (@) +at (@)~ 20y (@) +2y(a) = 200

Type: Equation Expression Integer

solve(deq, y, x)

articular = £=102°420 2”44
b 15z ;
_ 223 322 +1 22 -1 23 -32%2-1
basis = , ,
x x x

Type: Union(Record(particular: Expression Integer,basis: List Expression
Integer),...)

Here we find all the algebraic function solutions of the equation.

deq := (x**¥2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) +yx =0

(*+1) y () +3zy (z)+y(x) =0

Type: Equation Expression Integer

solve(deq, y, x)
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1 log (Va2 +1—z)
V2 +1’ 2 +1

Type: Union(Record(particular: Expression Integer,basis: List Expression
Integer),...)

particular = 0, basis =

Coefficients of differential equations can come from arbitrary constant fields. For example,
coefficients can contain algebraic numbers.

This example has solutions whose logarithmic derivative is an algebraic function of degree
two.

eq := 2*x**3 * D(y x,x,2) + 3*x**2 * D(y x,x) - 2 * y X
22y (2) + 32 y () — 2y (2)

Type: Expression Integer

solve(eq,y,x) .basis

Type: List Expression Integer
Here’s another differential equation to solve.
deq := D(y %, x) =y&x) / (x + y(x) * log y x)

y (v)
log (y (z)) +

v (@)= y(z)

Type: Equation Expression Integer

solve(deq, y, x)

Type: Union(Expression Integer,...)

Rather than attempting to get a closed form solution of a differential equation, you instead
might want to find an approximate solution in the form of a series.

Let’s solve a system of nonlinear first order equations and get a solution in power series. Tell
Axiom that x is also an operator.
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X := operator ’x

Type: BasicOperator

Here are the two equations forming our system.

D(x(t), t)

eql : 1 + x(t)**2
) =z(t)?+1

Type: Equation Expression Integer

eq2 := D(y(t), t) = x(t) * y(t)

y () =z () y(t)
Type: Equation Expression Integer
We can solve the system around ¢ = 0 with the initial conditions z(0) = 0 and y(0) = 1.
Notice that since we give the unknowns in the order [z, y], the answer is a list of two series

in the order [series for z(t), series for y(t)].

seriesSolve([eq2, eqll, [x, yl, t = 0, [y(0) =1, x(0) = 0])

1 2 17 62
t+ - B+ =t T+ —— 2+ O (t"!
3T T Tyt T ().
1 5 61 277 50521
LS 4t 10+ s '+ 0 (")

2 24 720 8064 3628800

Type: List UnivariateTaylorSeries(Expression Integer,t,0)

1.14 Solution of Equations

Axiom also has state-of-the-art algorithms for the solution of systems of polynomial equa-
tions. When the number of equations and unknowns is the same, and you have no symbolic
coefficients, you can use solve for real roots and complexSolve for complex roots. In each
case, you tell Axiom how accurate you want your result to be. All operations in the solve
family return answers in the form of a list of solution sets, where each solution set is a list
of equations.

A system of two equations involving a symbolic parameter ¢.
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S(t) == [x**2-2%y**2 - t,x*y-y-5*x + 5]
Type: Void

Find the real roots of S(19) with rational arithmetic, correct to within 1/102°.

solve(S(19),1/10%*x20)

Hy e 2451682632253093442511]
’ 205147905179352825856 |’
 2451682632253093442511

{y = 7 T 995147905179352825856 ”

Type: List List Equation Polynomial Fraction Integer

Find the complex roots of S(19) with floating point coeflicients to 20 digits accuracy in the
mantissa.

complexSolve(S(19),10.e-20)

[y = 5.0, 2 = 8.3066238629180748526],
5.0,z = —8.3066238629180748526],
=—304,2=10],[y =304z =10]

[

y
ly

Type: List List Equation Polynomial Complex Float

If a system of equations has symbolic coefficients and you want a solution in radicals, try
radicalSolve.

radicalSolve(S(a), [x,y])

[[x=—Va+50,y=5], [z =+Va+50,y =5],

—a+1
2

—a+1
2

r=19y=—

)

[m =1l,y=
Type: List List Equation Expression Integer

For systems of equations with symbolic coefficients, you can apply solve, listing the variables
that you want Axiom to solve for. For polynomial equations, a solution cannot usually
be expressed solely in terms of the other variables. Instead, the solution is presented as
a “triangular” system of equations, where each polynomial has coefficients involving only
the succeeding variables. This is analogous to converting a linear system of equations to
“triangular form”.

A system of three equations in five variables.
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eqns := [x*x*2 — y + z,x**2xz + xx*4 — by, y**2 xz - a - b*x]
[z—y+x2,x22—by+x4,y2 z—bx—a]
Type: List Polynomial Integer

Solve the system for unknowns [z, y, 2], reducing the solution to triangular form.

solve(eqns, [x,y,z])

a a
|:|:x:_b7y:O’Z:_b2 ,

|:JU: z3+2bz;+b2 Zﬁa,y:Z—Fb,
26+4bz5+6b224+(4b3—2a) 23+(b4—4ab) 22—
2ab2z—b3+a2:O]

Type: List List Equation Fraction Polynomial Integer

1.15 System Commands

We conclude our tour of Axiom with a brief discussion of system commands. System com-
mands are special statements that start with a closing parenthesis ()). They are used to
control or display your Axiom environment, start the HyperDoc system, issue operating sys-
tem commands and leave Axiom. For example, )system is used to issue commands to the
operating system from Axiom. Here is a brief description of some of these commands. For
more information on specific commands, see Appendix A on page HI9.

Perhaps the most important user command is the ) clear all command that initializes your
environment. Every section and subsection in this document has an invisible )clear all
that is read prior to the examples given in the section. ) clear all gives you a fresh, empty
environment with no user variables defined and the step number reset to 1. The )clear
command can also be used to selectively clear values and properties of system variables.

Another useful system command is Jread. A preferred way to develop an application in
Axiom is to put your interactive commands into a file, say my.input file. To get Axiom to
read this file, you use the system command )read my.input. If you need to make changes
to your approach or definitions, go into your favorite editor, change my.input, then )read
my . input again.

Other system commands include: )history, to display previous input and/or output lines;
)display, to display properties and values of workspace variables; and )what.

Issue )what to get a list of Axiom objects that contain a given substring in their name.
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Jwhat operations integrate

Operations whose names satisfy the above pattern(s):

HermiteIntegrate algintegrate complexIntegrate
expintegrate extendedIntegrate fintegrate
infieldIntegrate integrate internalIntegrate
internalIntegrateO lazyGintegrate lazyIntegrate
lfintegrate limitedIntegrate monomialIntegrate
nagPolygonIntegrate palgintegrate pmComplexintegrate
pmintegrate primintegrate tanintegrate

To get more information about an operation such as
limitedIntegrate , issue the command )display op limitedIntegrate

1.15.1 Undo

A useful system command is )undo. Sometimes while computing interactively with Axiom,
you make a mistake and enter an incorrect definition or assignment. Or perhaps you need to
try one of several alternative approaches, one after another, to find the best way to approach
an application. For this, you will find the undo facility of Axiom helpful.

System command )undo n means “undo back to step n”; it restores the values of user
variables to those that existed immediately after input expression n was evaluated. Similarly,
Jundo -n undoes changes caused by the last n input expressions. Once you have done an
)undo, you can continue on from there, or make a change and redo all your input expressions
from the point of the )undo forward. The )undo is completely general: it changes the
environment like any user expression. Thus you can )undo any previous undo.

Here is a sample dialogue between user and Axiom.

“Let me define two mutually dependent functions f and g piece-wise.”

£(0) == 1; g(0) == 1

Type: Void

“Here is the general term for f.”

f(n) == e/2*%f(n-1) - x*g(n-1)

Type: Void
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)

“And here is the general term for g.’

g(n) == -x*xf(n-1) + d/3xg(n-1)

Type: Void

“What is value of f(3)?”

£(3)

1 1 1 1 1
—x3+(e+3d) x2+<—462—6de—9d2>m+8e3

Type: Polynomial Fraction Integer

“Hmm, I think I want to define f differently. Undo to the environment right after I defined
f-”

Jundo 2

“Here is how I think I want f to be defined instead.”

f(n) == d/3*f(n-1) - x*g(n-1)

1 o0ld definition(s) deleted for function or rule f

Type: Void
Redo the computation from expression 3 forward.
Jundo )redo
g(n) == -x*xf(n-1) + d/3*g(n-1)
Type: Void
£(3)

Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.

+++ [*1;g;1;G82322;AUX| redefined
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+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined
+++ |*1;g;1;G82322| redefined
Compiling function f with type Integer -> Polynomial Fraction

Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

1 1
_ .3 2 _ - 52 =73

Type: Polynomial Fraction Integer

“I want my old definition of f after all. Undo the undo and restore the environment to that
immediately after (4).”

Jundo 4

“Check that the value of f(3) is restored.”
£(3)
Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.
+++ |*1;g;1;G82322;AUX| redefined
+++ |*1;g;1;G82322| redefined
Compiling function g with type Integer -> Polynomial Fraction
Integer
Compiling function g as a recurrence relation.

+++ |*1;g;1;G82322;AUX| redefined

+++ |*1;g;1;G82322| redefined
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Compiling function f with type Integer -> Polynomial Fraction
Integer
Compiling function f as a recurrence relation.

+++ |*1;f;1;G82322;AUX| redefined

+++ |*1;f;1;G82322| redefined

1 1 1 1 1
| 1 2 R I Lo 13
x+(e+3d)x+<4e 6de 9d>:1:—|—8e

Type: Polynomial Fraction Integer

After you have gone off on several tangents, then backtracked to previous points in your
conversation using )undo, you might want to save all the “correct” input commands you
issued, disregarding those undone. The system command )history )write mynew.input
writes a clean straight-line program onto the file mynew.input on your disk.

1.16 Graphics

Axiom has a two- and three-dimensional drawing and rendering package that allows you to
draw, shade, color, rotate, translate, map, clip, scale and combine graphic output of Axiom
computations. The graphics interface is capable of plotting functions of one or more variables
and plotting parametric surfaces. Once the graphics figure appears in a window, move your
mouse to the window and click. A control panel appears immediately and allows you to
interactively transform the object.

This is an example of Axiom’s two-dimensional plotting. From the 2D Control Panel you
can rescale the plot, turn axes and units on and off and save the image, among other things.
This PostScript image was produced by clicking on the PS 2D Control Panel button.

draw(cos(5*t/8), t=0..16%%pi, coordinates==polar)

This is an example of Axiom’s three-dimensional plotting. It is a monochrome graph of
the complex arctangent function. The image displayed was rotated and had the “shade”
and “outline” display options set from the 3D Control Panel. The PostScript output was
produced by clicking on the save 3D Control Panel button and then clicking on the PS
button. See section Bl on page for more details and examples of Axiom’s numeric and
graphics capabilities.

draw((x,y) +-> real atan complex(x,y), -%pi..%pi, -%pi..%pi, colorFunction
== (x,y) +-> argument atan complex(x,y))

An exhibit of Axiom images is given later. For a description of the commands and programs
that produced these figures, see section E on page ITI3. PostScript output is available so
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Figure 1.2: atan

that Axiom images can be printed.™ See section @ on page for more examples and
details about using Axiom’s graphics facilities.

This concludes your tour of Axiom. To disembark, issue the system command )quit to leave
Axiom and return to the operating system.

15PostScript is a trademark of Adobe Systems Incorporated, registered in the United States.



Chapter 2

Using Types and Modes

Only recently have I begun to realize that the problem is not merely one of
technical mastery or the competent application of the rules ...but that there is
actually something else which is guiding these rules. It actually involves a differ-
ent level of mastery. It’s quite a different process to do it right; and every single
act that you do can be done in that sense well or badly. But even assuming that
you have got the technical part clear, the creation of this quality is a much more
complicated process of the most utterly absorbing and fascinating dimensions. It
is in fact a major creative or artistic act — every single little thing you do — ...

— Christopher Alexander
(from Patterns of Software by Richard Gabriel)

In this chapter we look at the key notion of type and its generalization mode. We show
that every Axiom object has a type that determines what you can do with the object. In
particular, we explain how to use types to call specific functions from particular parts of the
library and how types and modes can be used to create new objects from old. We also look
at Record and Union types and the special type Any. Finally, we give you an idea of how
Axiom manipulates types and modes internally to resolve ambiguities.

2.1 The Basic Idea

The Axiom world deals with many kinds of objects. There are mathematical objects such
as numbers and polynomials, data structure objects such as lists and arrays, and graphics
objects such as points and graphic images. Functions are objects too.

Axiom organizes objects using the notion of domain of computation, or simply domain.
Each domain denotes a class of objects. The class of objects it denotes is usually given by
the name of the domain: Integer for the integers, Float for floating-point numbers, and
so on. The convention is that the first letter of a domain name is capitalized. Similarly,

123
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the domain Polynomial (Integer) denotes “polynomials with integer coefficients.” Also,
Matrix(Float) denotes “matrices with floating-point entries.”

Every basic Axiom object belongs to a unique domain. The integer 3 belongs to the domain
Integer and the polynomial x + 3 belongs to the domain Polynomial (Integer). The
domain of an object is also called its type. Thus we speak of “the type Integer” and “the
type Polynomial (Integer).”

After an Axiom computation, the type is displayed toward the right-hand side of the page
(or screen).

-3

Type: Integer

Here we create a rational number but it looks like the last result. The type however tells you
it is different. You cannot identify the type of an object by how Axiom displays the object.

-3/1

Type: Fraction Integer

When a computation produces a result of a simpler type, Axiom leaves the type unsimplified.
Thus no information is lost.

X+ 3 -x

Type: Polynomial Integer

This seldom matters since Axiom retracts the answer to the simpler type if it is necessary.

factorial(¥%)

Type: Expression Integer

When you issue a positive number, the type PositiveInteger is printed. Surely, 3 also has
type Integer! The curious reader may now have two questions. First, is the type of an
object not unique? Second, how is PositiveInteger related to Integer?
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Type: Positivelnteger

Any domain can be refined to a subdomain by a membership predicate. A predicate is a
function that, when applied to an object of the domain, returns either true or false. For
example, the domain Integer can be refined to the subdomain PositiveInteger, the set of
integers x such that x > 0, by giving the Axiom predicate x +-> x > 0. Similarly, Axiom
can define subdomains such as “the subdomain of diagonal matrices,” “the subdomain of
lists of length two,” “the subdomain of monic irreducible polynomials in z,” and so on.
Trivially, any domain is a subdomain of itself.

While an object belongs to a unique domain, it can belong to any number of subdomains.
Any subdomain of the domain of an object can be used as the type of that object. The type
of 3 is indeed both Integer and PositiveInteger as well as any other subdomain of integer
whose predicate is satisfied, such as “the prime integers,” “the odd positive integers between
3 and 17,” and so on.

2.1.1 Domain Constructors

In Axiom, domains are objects. You can create them, pass them to functions, and, as we’ll
see later, test them for certain properties.

In Axiom, you ask for a value of a function by applying its name to a set of arguments.

To ask for “the factorial of 77 you enter this expression to Axiom. This applies the function
factorial to the value 7 to compute the result.

factorial(7)

5040

Type: Positivelnteger

Enter the type Polynomial (Integer) as an expression to Axiom. This looks much like a
function call as well. It is! The result is appropriately stated to be of type Domain, which
according to our usual convention, denotes the class of all domains.

Polynomial (Integer)

Polynomial Integer

Type: Domain
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The most basic operation involving domains is that of building a new domain from a given
one. To create the domain of “polynomials over the integers,” Axiom applies the function
Polynomial to the domain Integer. A function like Polynomial is called a domain con-
structor or, more simply, a constructor. A domain constructor is a function that creates a
domain. An argument to a domain constructor can be another domain or, in general, an
arbitrary kind of object. Polynomial takes a single domain argument while SquareMatrix
takes a positive integer as an argument to give its dimension and a domain argument to give
the type of its components.

What kinds of domains can you use as the argument to Polynomial or SquareMatrix or
List? Well, the first two are mathematical in nature. You want to be able to perform
algebraic operations like “+” and “*” on polynomials and square matrices, and operations
such as determinant on square matrices. So you want to allow polynomials of integers and
polynomials of square matrices with complex number coefficients and, in general, anything
that “makes sense.” At the same time, you don’t want Axiom to be able to build nonsense
domains such as “polynomials of strings!”

In contrast to algebraic structures, data structures can hold any kind of object. Operations
on lists such as insert, delete, and concat just manipulate the list itself without changing
or operating on its elements. Thus you can build List over almost any datatype, including
itself.

Create a complicated algebraic domain.

List (List (Matrix (Polynomial (Complex (Fraction (Integer))))))

List List Matrix Polynomial Complex Fraction Integer

Type: Domain

Try to create a meaningless domain.

Polynomial (String)

Polynomial String is not a valid type.

Evidently from our last example, Axiom has some mechanism that tells what a constructor
can use as an argument. This brings us to the notion of category. As domains are objects,
they too have a domain. The domain of a domain is a category. A category is simply a type
whose members are domains.

A common algebraic category is Ring, the class of all domains that are “rings.” A ring
is an algebraic structure with constants 0 and 1 and operations “+”, “~” and “*¥”. These
operations are assumed “closed” with respect to the domain, meaning that they take two
objects of the domain and produce a result object also in the domain. The operations
are understood to satisfy certain “axioms,” certain mathematical principles providing the
algebraic foundation for rings. For example, the additive inverse axiom for rings states:
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Every element = has an additive inverse y such that x +y = 0.

The prototypical example of a domain that is a ring is the integers. Keep them in mind
whenever we mention Ring.

Many algebraic domain constructors such as Complex, Polynomial, Fraction, take rings as
arguments and return rings as values. You can use the infix operator “has” to ask a domain
if it belongs to a particular category.

All numerical types are rings. Domain constructor Polynomial builds “the ring of polyno-
mials over any other ring.”

Polynomial (Integer) has Ring
true
Type: Boolean
Constructor List never produces a ring.
List(Integer) has Ring
false

Type: Boolean

The constructor Matrix (R) builds “the domain of all matrices over the ring R.” This domain
is never a ring since the operations “+”, “~” and “*” on matrices of arbitrary shapes are

undefined.

Matrix(Integer) has Ring

false

Type: Boolean

Thus you can never build polynomials over matrices.

Polynomial (Matrix(Integer))

Polynomial Matrix Integer is not a valid type.

Use SquareMatrix(n,R) instead. For any positive integer n, it builds “the ring of n by n
matrices over R.”
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Polynomial (SquareMatrix(7,Complex (Integer)))

Polynomial SquareMatrix(7,Complex Integer)

Type: Domain

Another common category is Field, the class of all fields. A field is a ring with additional
operations. For example, a field has commutative multiplication and a closed operation
“/” for the division of two elements. Integer is not a field since, for example, 3/2 does
not have an integer result. The prototypical example of a field is the rational numbers,
that is, the domain Fraction(Integer). In general, the constructor Fraction takes an
IntegralDomain, which is a ring with additional properties, as an argument and returns a
field. ® Other domain constructors, such as Complex, build fields only if their argument
domain is a field.

The complex integers (often called the “Gaussian integers”) do not form a field.

Complex(Integer) has Field

false

Type: Boolean

But fractions of complex integers do.

Fraction(Complex(Integer)) has Field

true

Type: Boolean

The algebraically equivalent domain of complex rational numbers is a field since domain
constructor Complex produces a field whenever its argument is a field.

Complex(Fraction(Integer)) has Field
true

Type: Boolean

The most basic category is Type. It denotes the class of all domains and subdomains. Note
carefully that Type does not denote the class of all types. The type of all categories is
Category. The type of Type itself is undefined. Domain constructor List is able to build

L Actually, the argument domain must have some additional so as to belong to the category IntegralDomain
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“lists of elements from domain D” for arbitrary D simply by requiring that D belong to
category Type.

Now, you may ask, what exactly is a category? Like domains, categories can be defined in
the Axiom language. A category is defined by three components:

1. a name (for example, Ring), used to refer to the class of domains that the category
represents;

2. aset of operations, used to refer to the operations that the domains of this class support
(for example, “+”, “=” and “¥” for rings); and

3. an optional list of other categories that this category extends.

This last component is a new idea. And it is key to the design of Axiom! Because categories
can extend one another, they form hierarchies. Detailed charts showing the category hier-
archies in Axiom are displayed in Appendix (TPDHERE). There you see that all categories
are extensions of Type and that Field is an extension of Ring.

The operations supported by the domains of a category are called the exports of that category
because these are the operations made available for system-wide use. The exports of a
domain of a given category are not only the ones explicitly mentioned by the category.
Since a category extends other categories, the operations of these other categories—and all
categories these other categories extend—are also exported by the domains.

For example, polynomial domains belong to PolynomialCategory. This category explicitly
mentions some twenty-nine operations on polynomials, but it extends eleven other cate-
gories (including Ring). As a result, the current system has over one hundred operations on
polynomials.

If a domain belongs to a category that extends, say, Ring, it is convenient to say that the
domain exports Ring. The name of the category thus provides a convenient shorthand for
the list of operations exported by the category. Rather than listing operations such as “+”
and “*” of Ring each time they are needed, the definition of a type simply asserts that it
exports category Ring.

The category name, however, is more than a shorthand. The name Ring, in fact, implies that
the operations exported by rings are required to satisfy a set of “axioms” associated with
the name Ring. This subtle but important feature distinguishes Axiom from other abstract
datatype designs.

Why is it not correct to assume that some type is a ring if it exports all of the operations
of Ring? Here is why. Some languages such as APL denote the Boolean constants true
and false by the integers 1 and 0 respectively, then use “+” and “*” to denote the logical
operators or and and. But with these definitions Boolean is not a ring since the additive
inverse axiom is violated. That is, there is no inverse element a such that 1 +a = 0, or,
in the usual terms: true or a = false. This alternative definition of Boolean can be
easily and correctly implemented in Axiom, since Boolean simply does not assert that it
is of category Ring. This prevents the system from building meaningless domains such as
Polynomial (Boolean) and then wrongfully applying algorithms that presume that the ring
axioms hold.
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Enough on categories. To learn more about them, see section 4 on page BZ4. We now return
to our discussion of domains.

Domains ezport a set of operations to make them available for system-wide use. Integer, for
example, exports the operations “+” and “=” given by the signatures “+”: (Integer,Integer)
— Integer and “=": (Integer,Integer) — Boolean, respectively. Each of these operations takes
two Integer arguments. The “+” operation also returns an Integer but “=" returns a
Boolean: true or false. The operations exported by a domain usually manipulate objects
of the domain—but not always.

The operations of a domain may actually take as arguments, and return as values, objects
from any domain. For example, Fraction (Integer) exports the operations “/”: (Inte-
ger,Integer) — Fraction(Integer) and characteristic: — NonNegativelnteger.

Suppose all operations of a domain take as arguments and return as values, only objects
from other domains. This kind of domain is what Axiom calls a package.

A package does not designate a class of objects at all. Rather, a package is just a collection
of operations. Actually the bulk of the Axiom library of algorithms consists of packages.
The facilities for factorization; integration; solution of linear, polynomial, and differential
equations; computation of limits; and so on, are all defined in packages. Domains needed
by algorithms can be passed to a package as arguments or used by name if they are not
“variable.” Packages are useful for defining operations that convert objects of one type to
another, particularly when these types have different parameterizations. As an example,
the package PolynomialFunction2(R,S) defines operations that convert polynomials over
a domain R to polynomials over S. To convert an object from Polynomial(Integer) to
Polynomial (Float), Axiom builds the package PolynomialFunctions2(Integer,Float)
in order to create the required conversion function. (This happens “behind the scenes” for
you: see section B4 on page 48 for details on how to convert objects.)

Axiom categories, domains and packages and all their contained functions are written in
the Axiom programming language and have been compiled into machine code. This is what
comprises the Axiom library. We will show you how to use these domains and their functions
and how to write your own functions.

2.2 Writing Types and Modes

We have already seen in the last section section E70l on page I2Z3 several examples of types.
Most of these examples had either no arguments (for example, Integer) or one argument (for
example, Polynomial (Integer)). In this section we give details about writing arbitrary
types. We then define modes and discuss how to write them. We conclude the section with
a discussion on constructor abbreviations.

When might you need to write a type or mode? You need to do so when you declare variables.

a : Positivelnteger

Type: Void
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You need to do so when you declare functions (See section EZ3 on page [[35)

f : Integer -> String

Type: Void

You need to do so when you convert an object from one type to another (See section P70 on
page [@R).

factor(2 :: Complex(Integer))
—i (1+4)*

Type: Factored Complex Integer

(2 = 3)$Integer

false

Type: Boolean

You need to do so when you give computation target type information (See section 9 on
page [53)

(2 = 3)@Boolean
false

Type: Boolean

2.2.1 Types with No Arguments

A constructor with no arguments can be written either with or without trailing opening and
closing parentheses “()”.

Boolean() is the same as Boolean
Integer () is the same as Integer
String() is the same as String
Void () is the same as Void

It is customary to omit the parentheses.
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2.2.2 Types with One Argument

A constructor with one argument can frequently be written with no parentheses. Types nest
from right to left so that Complex Fraction Polynomial Integer is the same as Complex
(Fraction (Polynomial (Integer))). You need to use parentheses to force the appli-
cation of a constructor to the correct argument, but you need not use any more than is
necessary to remove ambiguities.

Here are some guidelines for using parentheses (they are possibly slightly more restrictive
than they need to be).

If the argument is an expression like 2+3 then you must enclose the argument in parentheses.

e : PrimeField(2 + 3)

Type: Void

If the type is to be used with package calling then you must enclose the argument in paren-
theses.

content (2) $Polynomial (Integer)

Type: Integer

Alternatively, you can write the type without parentheses then enclose the whole type ex-
pression with parentheses.

content (2)$(Polynomial Complex Fraction Integer)

Type: Complex Fraction Integer

If you supply computation target type information (See section EZ9 on page I5H) then you
should enclose the argument in parentheses.

(2/3)@Fraction(Polynomial (Integer))

Type: Fraction Polynomial Integer
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If the type itself has parentheses around it and we are not in the case of the first example
above, then the parentheses can usually be omitted.

(2/3)@Fraction(Polynomial Integer)

[SVRN )

Type: Fraction Polynomial Integer

If the type is used in a declaration and the argument is a single-word type, integer or symbol,
then the parentheses can usually be omitted.

(d,f,g) : Complex Polynomial Integer

Type: Void

2.2.3 Types with More Than One Argument

If a constructor has more than one argument, you must use parentheses. Some examples are

UnivariatePolynomial(x, Float)
MultivariatePolynomial ([z,w,r], Complex Float)
SquareMatrix (3, Integer)
FactoredFunctions2(Integer,Fraction Integer)

2.2.4 Modes

A mode is a type that possibly is a question mark (?) or contains one in an argument posi-
tion. For example, the following are all modes.

-
Polynomial 7

Matrix Polynomial 7
SquareMatrix(3,7)

Integer
OneDimensionalArray(Float)

As is evident from these examples, a mode is a type with a part that is not specified (indicated
by a question mark). Only one “?” is allowed per mode and it must appear in the most
deeply nested argument that is a type. Thus 7(Integer), Matrix(? (Polynomial)),
SquareMatrix(?, Integer) (it requires a numeric argument) and SquareMatrix(?, ?)
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are all invalid. The question mark must take the place of a domain, not data. This rules
out, for example, the two SquareMatrix expressions.

Modes can be used for declarations (See section P23 on page [34) and conversions (section P74
on page [@R). However, you cannot use a mode for package calling or giving target type
information.

2.2.5 Abbreviations

Every constructor has an abbreviation that you can freely substitute for the constructor
name. In some cases, the abbreviation is nothing more than the capitalized version of the
constructor name.

Aside from allowing types to be written more concisely, abbreviations are
used by Axiom to name various system files for constructors (such as library
filenames, test input files and example files). Here are some common abbre-
viations.

COMPLEX abbreviates Complex DFLOAT abbreviates DoubleFloat

EXPR abbreviates Expression FLOAT abbreviates Float

FRAC abbreviates Fraction INT abbreviates Integer

MATRIX abbreviates Matrix NNI abbreviates NonNegativeInteger

PI abbreviates PositiveInteger POLY abbreviates Polynomial

STRING abbreviates String UP abbreviates UnivariatePolynomial

You can combine both full constructor names and abbreviations in a type expression. Here
are some types using abbreviations.

POLY INT is the same as Polynomial (INT)
POLY(Integer) is the same as Polynomial(Integer)
POLY(Integer) is the same as Polynomial(INT)

FRAC(COMPLEX(INT)) is the same as Fraction Complex Integer
FRAC(COMPLEX(INT)) is the same as FRAC(Complex Integer)

There are several ways of finding the names of constructors and their abbreviations. For a
specific constructor, use )abbreviation query. You can also use the )what system com-
mand to see the names and abbreviations of constructors. For more information about
)what, see section B=3T on page M3

)abbreviation query can be abbreviated (no pun intended) to )abb q.

)abb q Integer

INT abbreviates domain Integer
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The )abbreviation query command lists the constructor name if you give the abbreviation.
Issue )abb q if you want to see the names and abbreviations of all Axiom constructors.

)abb q DMP

DMP abbreviates domain DistributedMultivariatePolynomial

Issue this to see all packages whose names contain the string “ode”.

Jwhat packages ode

Packages with names matching patterns:
ode

EXPRODE ExpressionSpaceODESolver
FCPAK1  FortranCodePackagel

GRAY GrayCode

LODEEF  ElementaryFunctionLODESolver
NODE1 NonLinearFirstOrderODESolver
ODECONST ConstantLODE

ODEEF ElementaryFunctionODESolver
ODEINT ODEIntegration

ODEPAL  PureAlgebraicLODE

ODERAT RationalLODE

ODERED  ReduceLODE

ODESYS  SystemODESolver

ODETOOLS ODETools

UTSODE  UnivariateTaylorSeriesODESolver
UTSODETL UTSodetools

2.3 Declarations

A declaration is an expression used to restrict the type of values that can be assigned to
variables. A colon “:” is always used after a variable or list of variables to be declared.

For a single variable, the syntax for declaration is
variableName : typeOrMode
For multiple variables, the syntax is

(variableName; , variableNames, ...variableNamey): typeOrMode
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You can always combine a declaration with an assignment. When you do, it is equivalent
to first giving a declaration statement, then giving an assignment. For more information on
assignment, see section 234 on page 2 and section B on page IX3. To see how to declare
your own functions, see section B2 on page 2.

This declares one variable to have a type.

a : Integer

Type: Void

This declares several variables to have a type.

(b,c) : Integer

Type: Void
a, b and ¢ can only hold integer values.
a := 45
45
Type: Integer

If a value cannot be converted to a declared type, an error message is displayed.

b := 4/5

Cannot convert right-hand side of assignment
4

5
to an object of the type Integer of the left-hand side.

This declares a variable with a mode.

n : Complex 7

Type: Void
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This declares several variables with a mode.

(p,q,r) : Matrix Polynomial ?

Type: Void
This complex object has integer real and imaginary parts.
n:=-36+9 % Ji
—36+91
Type: Complex Integer
This complex object has fractional symbolic real and imaginary parts.
n := complex(4/(x + y),y/x)

4 Y.

+
yt+xr x

Type: Complex Fraction Polynomial Integer

This matrix has entries that are polynomials with integer coefficients.

p := [ [1,2],[3,4],[5,6] ]

ot W —
O =N

Type: Matrix Polynomial Integer

This matrix has a single entry that is a polynomial with rational number coefficients.

q:=[[x-2/3]1

Type: Matrix Polynomial Fraction Integer
This matrix has entries that are polynomials with complex integer coefficients.

r = [ [1-%ixx,7*y+4*%i] ]
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[—iz+1 Ty+4i]
Type: Matrix Polynomial Complex Integer

Note the difference between this and the next example. This is a complex object with
polynomial real and imaginary parts.

f : COMPLEX POLY 7 := (x + y*Ji)*x*2
—yP 2’42z yi
Type: Complex Polynomial Integer

This is a polynomial with complex integer coefficients. The objects are convertible from one
to the other. See section P71 on page @Y for more information.

g : POLY COMPLEX 7 := (x + y*%i)**2
—2+2izy+a®

Type: Polynomial Complex Integer

2.4 Records

A Record is an object composed of one or more other objects, each of which is referenced
with a selector. Components can all belong to the same type or each can have a different

type.

The syntax for writing a Record type is
Record(selector; : type, , selectors:typey, ..., selectory:typey)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote.

Record components are implicitly ordered. All the components of a record can be set at
once by assigning the record a bracketed tuple of values of the proper length. For example:

r : Record(a:Integer, b: String) := [1, "two"]

[a=1,b="two"]
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Type: Record(a: Integer,b: String)

To access a component of a record r, write the name r, followed by a period, followed by a
selector.

The object returned by this computation is a record with two components: a quotient part
and a remainder part.

u := divide(5,2)
[quotient = 2, remainder = 1]
Type: Record(quotient: Integer,remainder: Integer)
This is the quotient part.

u.quotient

Type: Positivelnteger

This is the remainder part.

u.remainder

Type: Positivelnteger

You can use selector expressions on the left-hand side of an assignment to change destruc-
tively the components of a record.

u.quotient := 8978
8978

Type: Positivelnteger

The selected component quotient has the value 8978, which is what is returned by the
assignment. Check that the value of u was modified.

u

[quotient = 8978, remainder = 1]
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Type: Record(quotient: Integer,remainder: Integer)

Selectors are evaluated. Thus you can use variables that evaluate to selectors instead of the
selectors themselves.

s := ’quotient

quotient

Type: Variable quotient

Be careful! A selector could have the same name as a variable in the workspace. If this
occurs, precede the selector name by a single quote, as in u.'quotient.

divide(5,2).s

Type: Positivelnteger

Here we declare that the value of bd has two components: a string, to be accessed via name,
and an integer, to be accessed via birthdayMonth.

bd : Record(name : String, birthdayMonth : Integer)

Type: Void
You must initially set the value of the entire Record at once.
bd := ["Judith", 3]
[name = "Judith", birthdayMonth = 3]
Type: Record(name: String,birthdayMonth: Integer)
Once set, you can change any of the individual components.
bd.name := "Katie"

"Katie"

Type: String
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Records may be nested and the selector names can be shared at different levels.

r : Record(a : Record(b: Integer, c: Integer), b: Integer)

Type: Void
The record r has a b selector at two different levels. Here is an initial value for r.
r:=[[1,2], 3]
[a=[b=1c=2],b=3]
Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

This extracts the b component from the a component of 7.

r.a.b

Type: Positivelnteger

This extracts the b component from r.

r.b

Type: Positivelnteger

You can also use spaces or parentheses to refer to Record components. This is the same as
r.a.

r(a)

Type: Record(b: Integer,c: Integer)

This is the same as r.b.

rb
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Type: Positivelnteger

This is the same as r.b := 10.
r(b) := 10
10

Type: Positivelnteger

Look at r to make sure it was modified.

[a=[b=1,¢c=2],b=10]

Type: Record(a: Record(b: Integer,c: Integer),b: Integer)

2.5 Unions

Type Union is used for objects that can be of any of a specific finite set of types. Two
versions of unions are available, one with selectors (like records) and one without.

2.5.1 Unions Without Selectors

The declaration z : Union(Integer, String, Float) states that x can have values that are
integers, strings or “big” floats. If, for example, the Union object is an integer, the object is
said to belong to the Integer branch of the Union. Note that we are being a bit careless with
the language here. Technically, the type of x is always Union(Integer, String, Float).
If it belongs to the Integer branch, x may be converted to an object of type Integer.

The syntax for writing a Union type without selectors is
Union(type,, types, ..., typen)

The types in a union without selectors must be distinct.

It is possible to create unions like Union(Integer, PositiveInteger) but they are difficult
to work with because of the overlap in the branch types. See below for the rules Axiom uses
for converting something into a union object.
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The case infix operator returns a Boolean and can be used to determine the branch in which

an object lies.

This function displays a message stating in which branch of the Union the object (defined

as x above) lies.

sayBranch(x : Union(Integer,String,Float)) : Void ==
output
x case Integer => "Integer branch"
X case String => "String branch"
"Float branch"

This tries sayBranch with an integer.

sayBranch 1

Compiling function sayBranch with type Union(Integer,String,Float)
-> Void
Integer branch

Type:
This tries sayBranch with a string.
sayBranch "hello"
String branch
Type:
This tries sayBranch with a floating-point number.
sayBranch 2.718281828
Float branch
Type:

Void

Void

Void

There are two things of interest about this particular example to which we would like to

draw your attention.
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1. Axiom normally converts a result to the target value before passing it to the function. If

we left the declaration information out of this function definition then the sayBranch
call would have been attempted with an Integer rather than a Union, and an error
would have resulted.

2. The types in a Union are searched in the order given. So if the type were given as

sayBranch(x: Union(String,Integer,Float,Any)): Void

then the result would have been “String branch” because there is a conversion from
Integer to String.

Sometimes Union types can have extremely long names. Axiom therefore abbreviates the
names of unions by printing the type of the branch first within the Union and then eliding

the

Here the Integer branch is displayed first. Use

remaining types with an ellipsis (...).

e o

to create a Union object from an

object.

78 ::

Union(Integer,String)

78

Type: Union(Integer,...)

Here the String branch is displayed first.

S

:= "string" :: Union(Integer,String)

"string"

Type: Union(String,...)

Use typeOf to see the full and actual Union type.

typeOf s

Union(Integer, String)

Type: Domain

A common operation that returns a union is exquo which returns the “exact quotient” if

the

quotient is exact,

three := exquo(6,2)
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Type: Union(Integer,...)
and "failed" if the quotient is not exact.
exquo(5,2)
"failed"
Type: Union("failed",...)
A union with a "failed" is frequently used to indicate the failure or lack of applicability

of an object. As another example, assign an integer a variable r declared to be a rational
number.

r: FRAC INT := 3

Type: Fraction Integer

The operation retractIfCan tries to retract the fraction to the underlying domain Integer.
It produces a union object. Here it succeeds.

retractIfCan(r)
3
Type: Union(Integer,...)
Assign it a rational number.
r := 3/2
3
2
Type: Fraction Integer
Here the retraction fails.
retractIfCan(r)
"failed"

Type: Union("failed",...)



146 CHAPTER 2. USING TYPES AND MODES

2.5.2 Unions With Selectors

Like records (section 4 on page [338), you can write Union types with selectors.

The syntax for writing a Union type with selectors is
Union(selector; : type;, selectors:typey, ..., selectorn :typey)

You must be careful if a selector has the same name as a variable in the
workspace. If this occurs, precede the selector name by a single quote. It
is an error to use a selector that does not correspond to the branch of the
Union in which the element actually lies.

Be sure to understand the difference between records and unions with selectors. Records
can have more than one component and the selectors are used to refer to the components.
Unions always have one component but the type of that one component can vary. An object
of type Record(a: Integer, b: Float, c: String) contains an integer and a float
and a string. An object of type Union(a: Integer, b: Float, c: String) contains
an integer or a float or a string.

Here is a version of the sayBranch function (cf. section 231 on page [22) that works with
a union with selectors. It displays a message stating in which branch of the Union the object
lies.

sayBranch(x:Union(i:Integer,s:String,f:Float)):Void==
output
x case i => "Integer branch"

X case s => "String branch"
"Float branch"

Note that case uses the selector name as its right-hand argument. If you accidentally use
the branch type on the right-hand side of case, false will be returned.

Declare variable u to have a union type with selectors.

u : Union(i : Integer, s : String)

Type: Void
Give an initial value to w.
u := "good morning"

"good morning"

Type: Union(s: String,...)
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Use case to determine in which branch of a Union an object lies.

u case i
false
Type:
u case s
true
Type:
To access the element in a particular branch, use the selector.
u.s
"good morning"
Type:

2.6 The “Any” Domain
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Boolean

Boolean

String

With the exception of objects of type Record, all Axiom data structures are homogenous,
that is, they hold objects all of the same type. If you need to get around this, you can use
type Any. Using Any, for example, you can create lists whose elements are integers, rational

numbers, strings, and even other lists.

Declare u to have type Any.

u: Any

Type: Void

Assign a list of mixed type values to u

u = [1, 7.2, 3/2, x*x2, "wally"]

3
1,7.2, o 22, "wally"
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Type: List Any

When we ask for the elements, Axiom displays these types.

u.l1

Type: Positivelnteger

Actually, these objects belong to Any but Axiom automatically converts them to their natural
types for you.

u.3

| W

Type: Fraction Integer

Since type Any can be anything, it can only belong to type Type. Therefore it cannot be
used in algebraic domains.

v : Matrix(Any)

Matrix Any is not a valid type.

Perhaps you are wondering how Axiom internally represents objects of type Any. An object
of type Any consists not only a data part representing its normal value, but also a type part
(a badge) giving its type. For example, the value 1 of type PositiveInteger as an object
of type Any internally looks like [1,PositiveInteger()].

When should you use Any instead of a Union type? For a Union, you must know in advance
exactly which types you are going to allow. For Any, anything that comes along can be
accommodated.

2.7 Conversion

Conversion is the process of changing an object of one type into an object of
another type. The syntax for conversion is:

object::newType

By default, 3 has the type PositivelInteger.
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Type: Positivelnteger

We can change this into an object of type Fraction Integer by using “::”.

3 :: Fraction Integer

Type: Fraction Integer

A coercion is a special kind of conversion that Axiom is allowed to do automatically when
you enter an expression. Coercions are usually somewhat safer than more general conver-
sions. The Axiom library contains operations called coerce and convert. Only the coerce
operations can be used by the interpreter to change an object into an object of another type
unless you explicitly use a : :.

By now you will be quite familiar with what types and modes look like. It is useful to think
of a type or mode as a pattern for what you want the result to be.

Let’s start with a square matrix of polynomials with complex rational number coefficients.

m : SquareMatrix(2,POLY COMPLEX FRAC INT)
Type: Void

m := matrix [ [x-3/4*%i,zxy*x2+1/2],[3/7*)i*y**4 - x,12-%i*9/5] ]

Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

We first want to interchange the Complex and Fraction layers. We do the conversion by
doing the interchange in the type expression.

ml :=m :: SquareMatrix(2,POLY FRAC COMPLEX INT)

) 2 1
A S
3141 ,4 60—9 ¢
5
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Type: SquareMatrix(2,Polynomial Fraction Complex Integer)

Interchange the Polynomial and the Fraction levels.

m2 :=ml :: SquareMatrix(2,FRAC POLY COMPLEX INT)
4 -3 1 2 y2 z+1
7 2
3iy" —Tx 60—9 ¢
7 5

Type: SquareMatrix(2,Fraction Polynomial Complex Integer)

Interchange the Polynomial and the Complex levels.

m3 := m2 :: SquareMatrix(2,FRAC COMPLEX POLY INT)
4z-3i 2 y2% z+1
1 2
—7 x+3 y* i 60—9 i
7 5

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

All the entries have changed types, although in comparing the last two results only the entry
in the lower left corner looks different. We did all the intermediate steps to show you what
Axiom can do.

In fact, we could have combined all these into one conversion.

m :: SquareMatrix(2,FRAC COMPLEX POLY INT)

4 z-3i 2 y% z+1
1 2

—7 x+3 y* i 60—9 i
7 5

Type: SquareMatrix(2,Fraction Complex Polynomial Integer)

There are times when Axiom is not be able to do the conversion in one step. You may
need to break up the transformation into several conversions in order to get an object of the
desired type.

We cannot move either Fraction or Complex above (or to the left of, depending on how you
look at it) SquareMatrix because each of these levels requires that its argument type have
commutative multiplication, whereas SquareMatrix does not. That is because Fraction
requires that its argument belong to the category IntegralDomain and Complex requires
that its argument belong to CommutativeRing. See section E on page IZ3 for a brief
discussion of categories. The Integer level did not move anywhere because it does not allow
any arguments. We also did not move the SquareMatrix part anywhere, but we could have.

Recall that m looks like this.
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Type: SquareMatrix(2,Polynomial Complex Fraction Integer)

If we want a polynomial with matrix coefficients rather than a matrix with polynomial
entries, we can just do the conversion.

m :: POLY SquareMatrix(2,COMPLEX FRAC INT)

0122+004+10x+—g¢%
00| 307 -1 0 0 12—

Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

9 .
52

We have not yet used modes for any conversions. Modes are a great shorthand for indicating
the type of the object you want. Instead of using the long type expression in the last example,
we could have simply said this.

m :: POLY 7
0 1] » 0 0] 4 1 0 —-34 1
[0 o]y Z*{ii o}y +{—1 0]3”{ 0 12-2
Type: Polynomial SquareMatrix(2,Complex Fraction Integer)

We can also indicate more structure if we want the entries of the matrices to be fractions.

m :: POLY SquareMatrix(2,FRAC 7)

0 17 5 0 01 4 1 0 34 1
RIT Eaad E s Eis I RS i ¢

Type: Polynomial SquareMatrix(2,Fraction Complex Integer)

2.8 Subdomains Again

A subdomain S of a domain D is a domain consisting of

1. those elements of D that satisfy some predicate (that is, a test that returns true or
false) and
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2. a subset of the operations of D.

Every domain is a subdomain of itself, trivially satisfying the membership test: true.

Currently, there are only two system-defined subdomains in Axiom that receive substantial
use. PositiveInteger and NonNegativeInteger are subdomains of Integer. An element
x of NonNegativeInteger is an integer that is greater than or equal to zero, that is, satisfies
x >=0. An element x of PositivelInteger is a nonnegative integer that is, in fact, greater
than zero, that is, satisfies > 0. Not all operations from Integer are available for these
subdomains. For example, negation and subtraction are not provided since the subdomains
are not closed under those operations. When you use an integer in an expression, Axiom
assigns to it the type that is the most specific subdomain whose predicate is satisfied.

This is a positive integer.

5
5
Type: Positivelnteger
This is a nonnegative integer.
0
0
Type: NonNegativelnteger
This is neither of the above.
-5
-5

Type: Integer

Furthermore, unless you are assigning an integer to a declared variable or using a conversion,
any integer result has as type the most specific subdomain.

(-2) - (-3)

Type: Positivelnteger
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0 :: Integer

Type: Integer

x : NonNegativelnteger := 5

Type: NonNegativelnteger

When necessary, Axiom converts an integer object into one belonging to a less specific sub-
domain. For example, in 3 —2, the arguments to “~” are both elements of PositiveInteger,
but this type does not provide a subtraction operation. Neither does NonNegativeInteger,
so 3 and 2 are viewed as elements of Integer, where their difference can be calculated. The
result is 1, which Axiom then automatically assigns the type PositiveInteger.

Certain operations are very sensitive to the subdomains to which their arguments belong.
This is an element of PositiveInteger.

2 *x 2
4
Type: Positivelnteger
This is an element of Fraction Integer.
2 **x (-2)
1
4

Type: Fraction Integer

It makes sense then that this is a list of elements of PositivelInteger.

[10*x*xi for i in 2..5]

[100, 1000, 10000, 100000]

Type: List Positivelnteger
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What should the type of [10%*(i-1) for i in 2..5] be? On one hand, i — 1 is always
an integer greater than zero as i ranges from 2 to 5 and so 10 * i is also always a positive
integer. On the other, ¢ — 1 is a very simple function of i. Axiom does not try to analyze
every such function over the index’s range of values to determine whether it is always positive
or nowhere negative. For an arbitrary Axiom function, this analysis is not possible.

So, to be consistent no such analysis is done and we get this.
[10**(i-1) for i in 2..5]
[10, 100, 1000, 10000]

Type: List Fraction Integer

To get a list of elements of PositiveInteger instead, you have two choices. You can use a
conversion.

[10%x((i-1) :: PI) for i imn 2..5]
Compiling function G82696 with type Integer -> Boolean

Compiling function G82708 with type NonNegativeInteger -> Boolean

10, 100, 1000, 10000]

Type: List Positivelnteger

Or you can use pretend.

[10*x((i-1) pretend PI) for i in 2..5]

[10, 100, 1000, 10000]

Type: List Positivelnteger

The operation pretend is used to defeat the Axiom type system. The expression object
pretend D means “make a new object (without copying) of type D from object.” If object
were an integer and you told Axiom to pretend it was a list, you would probably see a
message about a fatal error being caught and memory possibly being damaged. Lists do not
have the same internal representation as integers!

You use pretend at your peril.

Use pretend with great care! Axiom trusts you that the value is of the specified type.
(2/3) pretend Complex Integer

2+31

Type: Complex Integer
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2.9 Package Calling and Target Types

Axiom works hard to figure out what you mean by an expression without your having to
qualify it with type information. Nevertheless, there are times when you need to help it
along by providing hints (or even orders!) to get Axiom to do what you want.

We saw in section 223 on page [[33 that declarations using types and modes control the type of
the results produced. For example, we can either produce a complex object with polynomial
real and imaginary parts or a polynomial with complex integer coefficients, depending on
the declaration.

Package calling is how you tell Axiom to use a particular function from a particular part of
the library.

Use the “/” from Fraction Integer to create a fraction of two integers.

2/3

[SCRN V)

Type: Fraction Integer

If we wanted a floating point number, we can say “use the “/” in Float.”

(2/3)$Float

0.66666666666666666667

Type: Float

Perhaps we actually wanted a fraction of complex integers.

(2/3)$Fraction(Complex Integer)

Type: Fraction Complex Integer

In each case, AXIOM used the indicated operations, sometimes first needing to convert the
two integers into objects of the appropriate type. In these examples, “/” is written as an
infix operator.

To use package calling with an infix operator, use the following syntax:

(argy op args )$type
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We used, for example, (2/3)$Float. The expression 2 4+ 3 + 4 is equivalent to (2 + 3) + 4.
Therefore in the expression (2 + 3 4+ 4)$Float the second “+” comes from the Float domain.
The first “4+” comes from Float because the package call causes AXIOM to convert (2 + 3)
and 4 to type Float. Before the sum is converted, it is given a target type of Float by AXIOM
and then evaluated. The target type causes the “+” from Float to be used.

For an operator written before its arguments, you must use parentheses
around the arguments (even if there is only one), and follow the closing
parenthesis by a “$” and then the type.

fun (argi,args, ... argy )Stype

For example, to call the “minimum” function from DoubleFloat on two integers, you could
write min(4,89)DoubleFloat. Another use of package calling is to tell AXIOM to use a
library function rather than a function you defined. We discuss this in section 629 on page 234.

Sometimes rather than specifying where an operation comes from, you just want to say what
type the result should be. We say that you provide a target type for the expression. Instead
of using a “$”, use a “@Q” to specify the requested target type. Otherwise, the syntax is the
same. Note that giving a target type is not the same as explicitly doing a conversion. The
first says “try to pick operations so that the result has such-and-such a type.” The second
says “compute the result and then convert to an object of such-and-such a type.”

Sometimes it makes sense, as in this expression, to say “choose the operations in this ex-
pression so that the final result is Float.

(2/3)@Float

0.66666666666666666667

Type: Float

Here we used “@” to say that the target type of the left-hand side was Float. In this simple
case, there was no real difference between using “$” and “@”. You can see the difference if
you try the following.

This says to try to choose “+” so that the result is a string. Axiom cannot do this.

(2 + 3)0@String

An expression involving @ String actually evaluated to one of
type Positivelnteger . Perhaps you should use :: String .

This says to get the + from String and apply it to the two integers. Axiom also cannot do
this because there is no + exported by String.

(2 + 3)$String
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The function + is not implemented in String .

(By the way, the operation concat or juxtaposition is used to concatenate two strings.)

When we have more than one operation in an expression, the difference is even more evident.
The following two expressions show that Axiom uses the target type to create different
objects. The “+”7  “x” and “**” operations are all chosen so that an object of the correct
final type is created.

This says that the operations should be chosen so that the result is a Complex object.
((x + y * %i)**2)@(Complex Polynomial Integer)
2242z vy
Type: Complex Polynomial Integer
This says that the operations should be chosen so that the result is a Polynomial object.
((x + y * %i)**2)@(Polynomial Complex Integer)
—2 +2ixy+a?
Type: Polynomial Complex Integer

What do you think might happen if we left off all target type and package call information
in this last example?

(x + g * %i)**2
—y? +2ixy+a?
Type: Polynomial Complex Integer

We can convert it to Complex as an afterthought. But this is more work than just saying
making what we want in the first place.

% :: Complex 7
2+t 42z vy
Type: Complex Polynomial Integer

Finally, another use of package calling is to qualify fully an operation that is passed as an
argument to a function.

Start with a small matrix of integers.
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h := matrix [ [8,6],[-4,9] ]

Type: Matrix Integer

We want to produce a new matrix that has for entries the multiplicative inverses of the
entries of h. One way to do this is by calling map with the inv function from Fraction
(Integer).

map (inv$Fraction(Integer) ,h)

L —
| =
=
O]
| I

Type: Matrix Fraction Integer

We could have been a bit less verbose and used abbreviations.

map (inv$FRAC(INT) ,h)

| —
| =
=
O]
—_

Type: Matrix Fraction Integer

As it turns out, Axiom is smart enough to know what we mean anyway. We can just say
this.

map (inv,h)

L —
| oo
=
O]
| I

Type: Matrix Fraction Integer

2.10 Resolving Types

In this section we briefly describe an internal process by which Axiom determines a type
to which two objects of possibly different types can be converted. We do this to give you
further insight into how Axiom takes your input, analyzes it, and produces a result.

What happens when you enter x + 1 to Axiom? Let’s look at what you get from the two
terms of this expression.

This is a symbolic object whose type indicates the name.
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Type: Variable x

This is a positive integer.

Type: Positivelnteger

There are no operations in PositiveInteger that add positive integers to objects of type
Variable(x) nor are there any in Variable(x). Before it can add the two parts, Axiom
must come up with a common type to which both z and 1 can be converted. We say that
Axiom must resolve the two types into a common type. In this example, the common type
is Polynomial (Integer).

Once this is determined, both parts are converted into polynomials, and the addition oper-
ation from Polynomial (Integer) is used to get the answer.

x+1
z+1
Type: Polynomial Integer

Axiom can always resolve two types: if nothing resembling the original types can be found,
then Any is be used. This is fine and useful in some cases.

["string",3.14159]
["string", 3.14159]
Type: List Any
In other cases objects of type Any can’t be used by the operations you specified.

"string" + 3.14159
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There are 11 exposed and 5 unexposed library operations named +
having 2 argument(s) but none was determined to be applicable.
Use HyperDoc Browse, or issue

)display op +
to learn more about the available operations. Perhaps
package-calling the operation or using coercions on the
arguments will allow you to apply the operation.

Cannot find a definition or applicable library operation named +
with argument type(s)
String
Float

Perhaps you should use "@" to indicate the required return type,
or "$" to specify which version of the function you need.

Although this example was contrived, your expressions may need to be qualified slightly to
help Axiom resolve the types involved. You may need to declare a few variables, do some
package calling, provide some target type information or do some explicit conversions.

We suggest that you just enter the expression you want evaluated and see what Axiom does.
We think you will be impressed with its ability to “do what I mean.” If Axiom is still being
obtuse, give it some hints. As you work with Axiom, you will learn where it needs a little
help to analyze quickly and perform your computations.

2.11 Exposing Domains and Packages

In this section we discuss how Axiom makes some operations available to you while hiding
others that are meant to be used by developers or only in rare cases. If you are a new user
of Axiom, it is likely that everything you need is available by default and you may want to
skip over this section on first reading.

Every domain and package in the Axiom library is either exposed (meaning that you can
use its operations without doing anything special) or it is hidden (meaning you have to
either package call (see section Z9 on page IBH) the operations it contains or explicitly
expose it to use the operations). The initial exposure status for a constructor is set in the
file exposed.lsp (see the Installer’s Note for Axiom if you need to know the location of
this file). Constructors are collected together in exposure groups. Categories are all in the
exposure group “categories” and the bulk of the basic set of packages and domains that are
exposed are in the exposure group “basic.” Here is an abbreviated sample of the file (without
the Lisp parentheses):

basic
AlgebraicNumber AN
AlgebraGivenByStructuralConstants ALGSC
Any ANY
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AnyFunctionsl ANY1
BinaryExpansion BINARY
Boolean BOOLEAN
CardinalNumber CARD
CartesianTensor CARTEN
Character CHAR
CharacterClass CCLASS
CliffordAlgebra CLIF
Color COLOR
Complex COMPLEX
ContinuedFraction CONTFRAC
DecimalExpansion DECIMAL
categories
AbelianGroup ABELGRP
AbelianMonoid ABELMON
AbelianMonoidRing AMR
AbelianSemiGroup ABELSG
Aggregate AGG
Algebra ALGEBRA
AlgebraicallyClosedField ACF
AlgebraicallyClosedFunctionSpace ACFS
ArcHyperbolicFunctionCategory AHYP

For each constructor in a group, the full name and the abbreviation is given. There are
other groups in exposed.lsp but initially only the constructors in exposure groups “basic”
“categories” ‘“naglink” and “anna” are exposed.

As an interactive user of Axiom, you do not need to modify this file. Instead, use )set
expose to expose, hide or query the exposure status of an individual constructor or expo-
sure group. The reason for having exposure groups is to be able to expose or hide multiple
constructors with a single command. For example, you might group together into exposure
group “quantum” a number of domains and packages useful for quantum mechanical com-
putations. These probably should not be available to every user, but you want an easy way
to make the whole collection visible to Axiom when it is looking for operations to apply.

If you wanted to hide all the basic constructors available by default, you would issue )set
expose drop group basic. We do not recommend that you do this. If, however, you
discover that you have hidden all the basic constructors, you should issue ) set expose add
group basic to restore your default environment.

It is more likely that you would want to expose or hide individual constructors. In section 19
on page E71 we use several operations from OutputForm, a domain usually hidden. To avoid
package calling every operation from OutputForm, we expose the domain and let Axiom
conclude that those operations should be used. Use )set expose add constructor and
)set expose drop constructor to expose and hide a constructor, respectively. You should
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use the constructor name, not the abbreviation. The )set expose command guides you
through these options.

If you expose a previously hidden constructor, Axiom exhibits new behavior (that was your
intention) though you might not expect the results that you get. OQutputForm is, in fact, one
of the worst offenders in this regard. This domain is meant to be used by other domains for
creating a structure that Axiom knows how to display. It has functions like “+” that form
output representations rather than do mathematical calculations. Because of the order in
which Axiom looks at constructors when it is deciding what operation to apply, OutputForm
might be used instead of what you expect.

This is a polynomial.

X + X

Type: Polynomial Integer

Expose OutputForm.

)set expose add constructor OutputForm

OutputForm is now explicitly exposed in frame G82322

This is what we get when OutputForm is automatically available.

X + X

r+x

Type: OutputForm

Hide OutputForm so we don’t run into problems with any later examples!

)set expose drop constructor OutputForm

OutputForm is now explicitly hidden in frame G82322

Finally, exposure is done on a frame-by-frame basis. A frame (see section BT on page M)
is one of possibly several logical Axiom workspaces within a physical one, each having its
own environment (for example, variables and function definitions). If you have several Axiom
workspace windows on your screen, they are all different frames, automatically created for
you by HyperDoc. Frames can be manually created, made active and destroyed by the
) frame system command. They do not share exposure information, so you need to use ) set
expose in each one to add or drop constructors from view.
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2.12 Commands for Snooping

To conclude this chapter, we introduce you to some system commands that you can use for
getting more information about domains, packages, categories, and operations. The most
powerful Axiom facility for getting information about constructors and operations is the
Browse component of HyperDoc. This is discussed in section @ on page H34.

Use the ) what system command to see lists of system objects whose name contain a particular
substring (uppercase or lowercase is not significant).

Issue this to see a list of all operations with “complex” in their names.

Jwhat operation complex

Operations whose names satisfy the above pattern(s):

complex complex?
complexEigenvalues complexEigenvectors
complexElementary complexExpand
complexForm complexIntegrate
complexLimit complexNormalize
complexNumeric complexNumericIfCan
complexRoots complexSolve
complexZeros createlLowComplexityNormalBasis
createLowComplexityTable doubleComplex?
drawComplex drawComplexVectorField
fortranComplex fortranDoubleComplex
pmComplexintegrate

To get more information about an operation such as
complexZeros, issue the command )display op complexZeros

)

If you want to see all domains with “matrix” in their names, issue this.

)Jwhat domain matrix

Domains with names matching patterns:
matrix

DHMATRIX DenavitHartenbergMatrix
DPMM DirectProductMatrixModule
IMATRIX IndexedMatrix
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LSQM LieSquareMatrix

M3D ThreeDimensionalMatrix
MATCAT- MatrixCategory&

MATRIX  Matrix

RMATCAT- RectangularMatrixCategory&
RMATRIX RectangularMatrix

SMATCAT- SquareMatrixCategory&
SQMATRIX SquareMatrix

Similarly, if you wish to see all packages whose names contain “gauss”, enter this.

Jwhat package gauss

Packages with names matching patterns:
gauss

GAUSSFAC GaussianFactorizationPackage

This command shows all the operations that Any provides. Wherever $ appears, it means
“Any”.

)show Any

Any 1is a domain constructor

Abbreviation for Any is ANY

This constructor is exposed in this frame.

Issue )edit /usr/local/axiom/mnt/algebra/any.spad
to see algebra source code for ANY

————————————————————— Operations ---—-—-————————————————-
?=? : (%,%) —-> Boolean

any : (SExpression,None) -> %

coerce : % —-> OutputForm

dom : % -> SExpression

domain0f : % -> OutputForm

hash : % -> Singlelnteger

latex : % —-> String

obj : % —> None

object0f : % -> OutputForm

?7=? : (%,%) -> Boolean
showTypeInOutput : Boolean -> String
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This displays all operations with the name complex.

)display operation complex

There is one exposed function called complex :
[1] (D1,D1) -> D from D if D has COMPCAT D1 and D1 has COMRING

Let’s analyze this output.

First we find out what some of the abbreviations mean.

)abbreviation query COMPCAT

COMPCAT abbreviates category ComplexCategory

)abbreviation query COMRING

COMRING abbreviates category CommutativeRing

So if D1 is a commutative ring (such as the integers or floats) and D belongs to ComplexCategory
D1, then there is an operation called complex that takes two elements of D1 and creates
an element of D. The primary example of a constructor implementing domains belonging to
ComplexCategory is Complex. See Complex T3 on page EUF for more information on that
and see section B4 on page 27 for more information on function types.
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Chapter 3

Using HyperDoc

HyperDoc

Axiom HyperDoc Top Level
. T
»

What would you like to do?
BBasic Commands  Solve problems by £filling in templates.

AReference Scan on—line documentation for Axiom.
ETopics Learn how to uge Axiom, by topic.

B Browse Browsge through the 2Axiom library.
ElExamples See examples of uge of the library.

B Settings Display and change the systemenvironment.
A About Axiom See gome basgic information about Axiom.
BAwWhat's Hew Enhancements in this vergion of Axiom.

Figure 3.1: The HyperDoc root window page.

HyperDoc is the gateway to Axiom. It’s both an on-line tutorial and an on-line reference
manual. It also enables you to use Axiom simply by using the mouse and filling in templates.
HyperDoc is available to you if you are running Axiom under the X Window System.

Pages usually have active areas, marked in this font (bold face). As you move the mouse

167
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pointer to an active area, the pointer changes from a filled dot to an open circle. The active
areas are usually linked to other pages. When you click on an active area, you move to the
linked page.

3.1 Headings

Most pages have a standard set of buttons at the top of the page. This is what they mean:

1ck on this to get help. e button only appears if there is specific help for the

1IN Click on thi help. The b 1 if there i ific help for th
page you are viewing. You can get general help for HyperDoc by clicking the help
button on the home page.

ﬂ Click here to go back one page. By clicking on this button repeatedly, you can go
back several pages and then take off in a new direction.

EEIE Go back to the home page, that is, the page on which you started. Use HyperDoc to
explore, to make forays into new topics. Don’t worry about how to get back. HyperDoc
remembers where you came from. Just click on this button to return.

From the root window (the one that is displayed when you start the system) this
button leaves the HyperDoc program, and it must be restarted if you want to use it
again. From any other HyperDoc window, it just makes that one window go away. You
must use this button to get rid of a window. If you use the window manager “Close”
button, then all of HyperDoc goes away.

The buttons are not displayed if they are not applicable to the page you are viewing. For
example, there is no EmIEbutton on the top-level menu.

3.2 Key Definitions

The following keyboard definitions are in effect throughout HyperDoc. See section B33 on
page and section B4 on page for some contextual key definitions.

F1 Display the main help page.

F3 Same as 140N , makes the window go away if you are not at the top-level window or
quits the HyperDoc facility if you are at the top-level.

F5 Rereads the HyperDoc database, if necessary (for system developers).
F9 Displays this information about key definitions.

F12 Same as F3.
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Up Arrow Scroll up one line.
Down Arrow Scroll down one line.
Page Up Scroll up one page.

Page Down Scroll down one page.

3.3 Scroll Bars

Whenever there is too much text to fit on a page, a scroll bar automatically appears along
the right side.

With a scroll bar, your page becomes an aperture, that is, a window into a larger amount
of text than can be displayed at one time. The scroll bar lets you move up and down in the
text to see different parts. It also shows where the aperture is relative to the whole text.
The aperture is indicated by a strip on the scroll bar.

Move the cursor with the mouse to the “down-arrow” at the bottom of the scroll bar and
click. See that the aperture moves down one line. Do it several times. Each time you click,
the aperture moves down one line. Move the mouse to the “up-arrow” at the top of the
scroll bar and click. The aperture moves up one line each time you click.

Next move the mouse to any position along the middle of the scroll bar and click. HyperDoc
attempts to move the top of the aperture to this point in the text.

You cannot make the aperture go off the bottom edge. When the aperture is about half the
size of text, the lowest you can move the aperture is halfway down.

To move up or down one screen at a time, use the ’PageUp‘ and ’PageDown‘ keys on

your keyboard. They move the visible part of the region up and down one page each time
you press them.

If the HyperDoc page does not contain an input area (see section B4 on page IGY, you can

also use the and and arrow keys to navigate. When you press the
key, the screen is positioned at the very top of the page. Use the and arrow keys to
move the screen up and down one line at a time, respectively.

3.4 Input Areas

Input areas are boxes where you can put data.

To enter characters, first move your mouse cursor to somewhere within the HyperDoc page.
Characters that you type are inserted in front of the underscore. This means that when you
type characters at your keyboard, they go into this first input area.

The input area grows to accommodate as many characters as you type. Use the

key to erase characters to the left. To modify what you type, use the right-arrow and
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left-arrow keys and the keys ’Insert , | Delete |, Home‘ and ’End ‘ These keys are
found immediately on the right of the standard IBM keyboard.

If you press the key, the cursor moves to the beginning of the line and if you press

the key, the cursor moves to the end of the line. Pressing deletes all
the text from the cursor to the end of the line.

A page may have more than one input area. Only one input area has an underscore cursor.
When you first see apage, the top-most input area contains the cursor. To type information
into another input area, use the ’Enter‘ or ’Tab‘ key to move from one input area to

xanother. To move in the reverse order, use | Shift .

You can also move from one input area to another using your mouse. Notice that each input
area is active. Click on one of the areas. As you can see, the underscore cursor moves to
that window.

3.5 Radio Buttons and Toggles

Some pages have radio buttons and toggles. Radio buttons are a group of buttons like those
on car radios: you can select only one at a time.

Once you have selected a button, it appears to be inverted and contains a checkmark. To
change the selection, move the cursor with the mouse to a different radio button and click.

A toggle is an independent button that displays some on/off state. When “on”, the button
appears to be inverted and contains a checkmark. When “off”, the button is raised.

Unlike radio buttons, you can set a group of them any way you like. To change toggle the
selection, move the cursor with the mouse to the button and click.

3.6 Search Strings

A search string is used for searching some database. To learn about search strings, we suggest
that you bring up the HyperDoc glossary. To do this from the top-level page of HyperDoc:

1. Click on Reference, bringing up the Axiom Reference page.

2. Click on Glossary, bringing up the glossary.

The glossary has an input area at its bottom. We review the various kinds of search strings
you can enter to search the glossary.

The simplest search string is a word, for example, operation. A word only matches an entry
having exactly that spelling. Enter the word operation into the input area above then click
on Search. As you can see, operation matches only one entry, namely with operation
itself.

Normally matching is insensitive to whether the alphabetic characters of your search string
are in uppercase or lowercase. Thus operation and OperAtion both have the same effect.
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You will very often want to use the wildcard “*” in your search string so as to match multiple
entries in the list. The search key “*” matches every entry in the list. You can also use “*”
anywhere within a search string to match an arbitrary substring. Try “cat*” for example:
enter “cat*” into the input area and click on Search. This matches several entries.

You use any number of wildcards in a search string as long as they are not adjacent. Try
search strings such as “x*dom*”. As you see, this search string matches “domain”, “domain
constructor”, “subdomain”, and so on.

3.6.1 Logical Searches

For more complicated searches, you can use “and”, “or”, and “not” with basic search strings;
write logical expressions using these three operators just as in the Axiom language. For ex-
ample, domain or package matches the two entries domain and package. Similarly, “dom*
and *con*” matches “domain constructor” and others. Also “not *a*” matches every

[

entry that does not contain the letter “a” somewhere.

Use parentheses for grouping. For example, “dom* and (not *con*)” matches “domain”
but not “domain constructor”.

There is no limit to how complex your logical expression can be. For example,
a* or bx or c* or d* or ex and (not *ax)

is a valid expression.

3.7 Example Pages

Many pages have Axiom example commands.

Each command has an active “button” along the left margin. When you click on this button,
the output for the command is “pasted-in.” Click again on the button and you see that the
pasted-in output disappears.

Maybe you would like to run an example? To do so, just click on any part of its text! When
you do, the example line is copied into a new interactive Axiom buffer for this HyperDoc
page.

Sometimes one example line cannot be run before you run an earlier one. Don’t worry—
HyperDoc automatically runs all the necessary lines in the right order!

The new interactive Axiom buffer disappears when you leave HyperDoc. If you want to get
rid of it beforehand, use the Cancel button of the X Window manager or issue the Axiom
system command )close.
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3.8 X Window Resources for HyperDoc

You can control the appearance of HyperDoc while running under Version 11 of the X
Window System by placing the following resources in the file .Xdefaults in your home
directory. In what follows, font is any valid X11 font name (for example, Rom14) and color
is any valid X11 color specification (for example, NavyBlue). For more information about
fonts and colors, refer to the X Window documentation for your system.

Axiom.hyperdoc.RmFont: font
This is the standard text font. The default value is Rom14

Axiom.hyperdoc.RmColor: color
This is the standard text color. The default value is black

Axiom.hyperdoc.ActiveFont: font
This is the font used for HyperDoc link buttons. The default value is B1d14

Axiom.hyperdoc.ActiveColor: color
This is the