Asymptote: the Vector Graphics
Language

For version 2.89

symptote

This file documents Asymptote, version 2.89.
https://asymptote.sourceforge.io
Copyright (©) 2004-24 Andy Hammerlindl, John Bowman, and Tom Prince.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Lesser General Public License (see the file LICENSE in
the top-level source directory).

https://asymptote.sourceforge.io

Table of Contents

1 Description............. 1
2 Installation.............., 3
2.1 UNIX binary distributions............. ..o i, 3
2.2 MacOS X binary distributions................ ... 3
2.3 Microsoft Windowsc.ouiiiin i 3
2.4 Configuringot 4
2.5 Search paths 6
2.6 Compiling from UNIX source...........cooviiiiiiiiiinnia... 6
2.7 Editing modes. ... 7
2.8 Gl ettt 8
2.9 Uninstallo 8

3 Tutorial 9
3.1 Drawing in batch mode.......... i 9
3.2 Drawing in interactive mode........... ... o il 9
3.3 Figure Sizeot 10
3.4 Labels .o 11
3.5 Paths ... 11

4 Drawing commands............................. 14
AL draW .ot 14
0 16
0 B 1) o X 18
4.4 label .. 18

5 Bezier curves............... i 22
6 Programming...................... 24
6.1 Data types. ..o 24
6.2 Pathsand guides........ ..o 31
6.3 Pens e 38
6.4 Transforms......... ..o 46
6.5 Frames and pictures........ ... 47
6.6 Files ... 53
6.7 Variable initializers.......... ... 56
6.8 SEIUCLUTES. .ottt e 57
6.9 Operators.o e 61
6.9.1 Arithmetic & logical operators...................... 61

6.9.2 Self & prefix operators.......... ..o 62

6.9.3 User-defined operators............cooiiiiiiiiiiii ... 63

6.10 Implicit scaling. ..o 63
6.11 Functionscooiiiii i e 64

6.11.1 Default arguments. ..., 66

6.11.2 Named arguments..............oovuiiiiiniiieennieeann. 66

6.11.3 Rest arguments........ ... i 67

6.11.4 Mathematical functions................ i, 69
B.12 ALY . oottt 70

6.12.1 SHCES. . ettt 77
6.13 Casts « ot 78
6.14 Tmportot 80

6.14.1 Templated iIMpPortsccooviiiiiiiiiiiiiiii .. 82
6.15 Static.ottt e 83
LaTeX usage.t 86
Base modules ... 91
8.1 pladm. ... 91
8.2 SImMPleX ... 91
8.3 math . e 91
8.4 interpolate........ ... 92
8.5 ZEOMELIY ..ottt 92
8.6 trembling............ i 92
BT S S e 92
8.8 PALLEIIS ..ottt 93
8.9 MATKETS ..ttt 93
.10 MaD e 95
G v =Y 95
8.12 binarytree. 95
8.13 Arawbree . oottt 96
Bl Sy ZY gy e et 96
8.15 feynman ... 96
8.16 roundedpath......... ..o i 97
8.17 animationcouiiiiiii i e 97
I8 embed. . ..ottt 97
.19 slideottt 98
8.20 MetaPoSt ..ottt e 98
8.21 babel ... i e 98
8.22 labelpath ...t 98
8.23 labelpath3. 98
8.24 Aannotate ...t 98
82D CAD . e 99
8.26 Graph. ... 99
8.27 palette 129
8. 28 three. . it 134
820 0D it 148

8.30 graphl. ... 148

ii

8.31 GTAdB. .o 153
B.32 SOLAAS . ittt 154
B33 BUDE . ot 155
8.34 £loWChATT .o ottt 156
8.30 COMTOUT ..ttt t ittt e 158
8.36 COMTOUT ...ttt 165
8.37 smoothcontour3ttt e 165
8.38 slopefield........cooiiiiiiiiiii 166
B30 0Q .. e 167
9 Command-line options........................ 168
10 Interactive mode............................. 173
11 Graphical User Interface.................... 175
11.1 GUILinstallation...........ouiiii e iiiiiiiieens 175
11.2 GUI USAZE - . v vt e 175
12 Command-Line Interface.................... 176
13 Language server protocol.................... 177
14 PostScript to Asymptote...................... 178
15 Help... ... 179
16 Debugger 180
17 Acknowledgments............................ 181

iii

1 Description

Asymptote is a powerful descriptive vector graphics language that provides a mathematical
coordinate-based framework for technical drawing. Labels and equations are typeset with
LaTeX, for overall document consistency, yielding the same high-quality level of typesetting
that LaTeX provides for scientific text. By default it produces PostScript output, but it
can also generate OpenGL, PDF, SVG, WebGL, V3D, and PRC vector graphics, along with any
format that the ImageMagick package can produce. You can even try it out in your Web
browser without installing it, using the Asymptote Web Application

http://asymptote.ualberta.ca

It is also possible to send remote commands to this server via the curl utility (see
Chapter 12 [Command-Line Interface], page 176).

A major advantage of Asymptote over other graphics packages is that it is a high-level
programming language, as opposed to just a graphics program: it can therefore exploit the
best features of the script (command-driven) and graphical-user-interface (GUI) methods
for producing figures. The rudimentary GUI xasy included with the package allows one
to move script-generated objects around. To make Asymptote accessible to the average
user, this GUI is currently being developed into a full-fledged interface that can generate
objects directly. However, the script portion of the language is now ready for general use by
users who are willing to learn a few simple Asymptote graphics commands (see Chapter 4
[Drawing commands|, page 14).

Asymptote is mathematically oriented (e.g. one can use complex multiplication to rotate
a vector) and uses LaTeX to do the typesetting of labels. This is an important feature for
scientific applications. It was inspired by an earlier drawing program (with a weaker syntax
and capabilities) called MetaPost.

The Asymptote vector graphics language provides:

e a standard for typesetting mathematical figures, just as TEX/LaTeX is the de-facto
standard for typesetting equations.

e LaTeX typesetting of labels, for overall document consistency;
e the ability to generate and embed 3D vector WebGL graphics within HTML files;
e the ability to generate and embed 3D vector PRC graphics within PDF files;

e a natural coordinate-based framework for technical drawing, inspired by MetaPost,
with a much cleaner, powerful C++-like programming syntax;

e compilation of figures into virtual machine code for speed, without sacrificing portabil-
ity;

e the power of a script-based language coupled to the convenience of a GUI,;

e customization using its own C++-like graphics programming language;

e sensible defaults for graphical features, with the ability to override;

e a high-level mathematically oriented interface to the PostScript language for vector
graphics, including affine transforms and complex variables;

e functions that can create new (anonymous) functions;

e deferred drawing that uses the simplex method to solve overall size constraint issues
between fixed-sized objects (labels and arrowheads) and objects that should scale with
figure size;

http://asymptote.ualberta.ca

Chapter 1: Description 2

Many of the features of Asymptote are written in the Asymptote language itself. While
the stock version of Asymptote is designed for mathematics typesetting needs, one can write
Asymptote modules that tailor it to specific applications; for example, a scientific graphing
module is available (see Section 8.26 [graph], page 99). Examples of Asymptote code and
output, including animations, are available at

https://asymptote.sourceforge.io/gallery/

Clicking on an example file name in this manual, like Pythagoras, will display the PDF
output, whereas clicking on its .asy extension will show the corresponding Asymptote code
in a separate window.

Links to many external resources, including an excellent user-written Asymptote tutorial
can be found at

https://asymptote.sourceforge.io/links.html
A quick reference card for Asymptote is available at

https://asymptote.sourceforge.io/asyRefCard.pdf

https://asymptote.sourceforge.io/gallery/
https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy
https://asymptote.sourceforge.io/links.html
https://asymptote.sourceforge.io/asyRefCard.pdf

2 Installation

After following the instructions for your specific distribution, please see also Section 2.4
[Configuring], page 4.

We recommend subscribing to new release announcements at
https://sourceforge.net/projects/asymptote
Users may also wish to monitor the Asymptote forum:

https://sourceforge.net/p/asymptote/discussion/409349

2.1 UNIX binary distributions

We release both tgz and RPM binary distributions of Asymptote. The root user can install
the Linux x86_64 tgz distribution of version x.xx of Asymptote with the commands:

tar -C / -zxf asymptote-x.xx.x86_64.tgz
texhash

The texhash command, which installs LaTeX style files, is optional. The executable
file will be /usr/local/bin/asy) and example code will be installed by default in
/usr/local/share/doc/asymptote/examples.

Fedora users can easily install a recent version of Asymptote with the command
dnf --enablerepo=rawhide install asymptote

To install the latest version of Asymptote on a Debian-based distribution (e.g. Ubuntu,
Mepis, Linspire) follow the instructions for compiling from UNIX source (see Section 2.6
[Compiling from UNIX source], page 6). Alternatively, Debian users can install one of
Hubert Chan’s prebuilt Asymptote binaries from

http://ftp.debian.org/debian/pool/main/a/asymptote

2.2 MacOS X binary distributions

MacOS X users can either compile the UNIX source code (see Section 2.6 [Compiling from
UNIX source|, page 6) or install the Asymptote binary available at

https://www.macports.org/
or at
https://brew.sh/

Note that many Mac0S X (and FreeBSD) systems lack the GNU readline library. For full
interactive functionality, GNU readline version 4.3 or later must be installed.

2.3 Microsoft Windows

Users of the Microsoft Windows operating system can install the self-extracting Asymptote
executable asymptote-x.xx-setup.exe, where x.xx denotes the latest version.
A working TgX implementation (we recommend https://www.tug.org/texlive or

http://www.miktex.org) will be required to typeset labels. You will also need to install
GPL Ghostscript version 9.56 or later from https://www.ghostscript.com/.

To view PostScript output, you can install the program Sumatra PDF available from
https://www.sumatrapdfreader.org/.

https://sourceforge.net/projects/asymptote
https://sourceforge.net/p/asymptote/discussion/409349
http://ftp.debian.org/debian/pool/main/a/asymptote
https://www.macports.org/
https://brew.sh/
https://www.tug.org/texlive
http://www.miktex.org
https://www.ghostscript.com/
https://www.sumatrapdfreader.org/

Chapter 2: Installation 4

The ImageMagick package from https://www.imagemagick.org/script/
binary-releases.php

is required to support output formats other than HTML, PDF, SVG, and PNG (see [convert],
page 171). The Python 3 interpreter from https://www.python.org is only required if you
wish to try out the graphical user interface (see Chapter 11 [GUI], page 175).

Example code will be installed by default in the examples subdirectory of the installation
directory (by default, C:\Program Files\Asymptote).

2.4 Configuring

In interactive mode, or when given the -V option (the default when running Asymptote on
a single file under MSDOS), Asymptote will automatically invoke your PostScript viewer
(evince under UNIX) to display graphical output. The PostScript viewer should be capable
of automatically redrawing whenever the output file is updated. The UNIX PostScript
viewer gv supports this (via a SIGHUP signal). Users of ggv will need to enable Watch file
under Edit/PostScript Viewer Preferences.

Configuration variables are most easily set as Asymptote variables in an optional con-

figuration file config.asy (see [configuration file], page 171). For example, the setting
pdfviewer specifies the location of the PDF viewer. Here are the default values of several
important configuration variables under UNIX:
import settings;
pdfviewer="acroread";
htmlviewer="google-chrome" ;
psviewer="evince";
display="display";
animate="animate";
gs="gs";
libgs="";
Under MSDOS, the viewer settings htmlviewer, pdfviewer, psviewer, display, and
animate default to the string cmd, requesting the application normally associated with
each file type. The (installation-dependent) default values of gs and 1ibgs are determined
automatically from the Microsoft Windows registry. The gs setting specifies the location
of the PostScript processor Ghostscript, available from https://www.ghostscript.
com/.

The configuration variable htmlviewer specifies the browser to use to display 3D WebGL out-
put. The default setting is google-chrome under UNIX and cmd under Microsoft Windows.
Note that Internet Explorer does not support WebGL; Microsoft Windows users should
set their default html browser to chrome or microsoft-edge. By default, 2D and 3D HTML
images expand to the enclosing canvas; this can be disabled by setting the configuration
variable absolute to true.

On UNIX systems, to support automatic document reloading of PDF files in Adobe Reader,
we recommend copying the file reload. js from the Asymptote system directory (by default,
/usr/local/share/asymptote under UNIX to ~/.adobe/Acrobat/x.x/JavaScripts/,
where x.x represents the appropriate Adobe Reader version number. The automatic
document reload feature must then be explicitly enabled by putting

import settings;

https://www.imagemagick.org/script/binary-releases.php
https://www.imagemagick.org/script/binary-releases.php
https://www.python.org
https://www.ghostscript.com/
https://www.ghostscript.com/

Chapter 2: Installation 5

pdfreload=true;
pdfreloadOptions="-tempFile";

in the Asymptote configuration file. This reload feature is not useful under MSDOS since the
document cannot be updated anyway on that operating system until it is first closed by
Adobe Reader.

The configuration variable dir can be used to adjust the search path (see Section 2.5
[Search paths|, page 6).

By default, Asymptote attempts to center the figure on the page, assuming that the paper
typeis letter. The default paper type may be changed to a4 with the configuration variable
papertype. Alignment to other paper sizes can be obtained by setting the configuration
variables paperwidth and paperheight.

These additional configuration variables normally do not require adjustment:

config
texpath
texcommand
dvips
dvisvgm
convert
asygl

Warnings (such as "unbounded" and "offaxis") may be enabled or disabled with the
functions

warn(string s);
nowarn(string s);

or by directly modifying the string array settings.suppress, which lists all disabled warn-
ings.
Configuration variables may also be set or overwritten with a command-line option:

asy -psviewer=evince -V venn

Alternatively, system environment versions of the above configuration variables may be
set in the conventional way. The corresponding environment variable name is obtained by
converting the configuration variable name to upper case and prepending ASYMPTOTE_: for
example, to set the environment variable

ASYMPTOTE_PAPERTYPE="a4";
under Microsoft Windows XP:

1. Click on the Start button;

2. Right-click on My Computer;

3. Choose View system information;
4. Click the Advanced tab;
5

Click the Environment Variables button.

Chapter 2: Installation 6

2.5 Search paths

In looking for Asymptote files, asy will search the following paths, in the order listed:
1. The current directory;

2. A list of one or more directories specified by the configuration variable dir or environ-
ment variable ASYMPTOTE_DIR (separated by : under UNIX and ; under MSDOS);

3. The directory specified by the environment variable ASYMPTOTE_HOME; if this variable is
not set, the directory .asy in the user’s home directory (%USERPROFILE%\.asy under
MSDOS) is used;

4. The Asymptote system directory (by default, /usr/local/share/asymptote under
UNIX and C:\Program Files\Asymptote under MSDOS).

5. The Asymptote examples directory (by default, /usr/local/share/doc/asymptote/examples
under UNIX and C:\Program Files\Asymptote\examples under MSDOS).

2.6 Compiling from UNIX source

To compile and install a UNIX executable from the source release asymptote-x.xx.src.tgz
in the subdirectory x.xx under

https://sourceforge.net/projects/asymptote/files/
execute the commands:

gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx

By default the system version of the Boehm garbage collector will be used; if it is old we
recommend first putting https://github.com/ivmai/bdwgc/releases/download/v8.0.
4/gc-8.0.4.tar.gzhttps://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.
6.10.tar.gz in the Asymptote source directory.

On UNIX platforms (other than MacOS X), we recommend using version 3.2.1 of the

freeglut library. To compile freeglut, download
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.
gz

and type (as the root user):

gunzip freeglut-3.2.1.tar.gz

tar -xf freeglut-3.2.1.tar

cd freeglut-3.2.1

cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_C_FLAGS=-fcommon .

make

make install

Then compile Asymptote with the commands
./configure
make all
make install
Be sure to use GNU make (on non-GNU systems this command may be called gmake). To
build the documentation, you may need to install the texinfo-tex package. If you get
errors from a broken texinfo or pdftex installation, simply put

https://sourceforge.net/projects/asymptote/files/
https://github.com/ivmai/bdwgc/releases/download/v8.0.4/gc-8.0.4.tar.gz
https://github.com/ivmai/bdwgc/releases/download/v8.0.4/gc-8.0.4.tar.gz
https://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.6.10.tar.gz
https://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.6.10.tar.gz
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.gz
https://prdownloads.sourceforge.net/freeglut/freeglut-3.2.1.tar.gz

Chapter 2: Installation 7

https://asymptote.sourceforge.io/asymptote.pdf
in the directory doc and repeat the command make all.

For a (default) system-wide installation, the last command should be done as the root user.
To install without root privileges, change the ./configure command to

./configure --prefix=$HOME/asymptote

One can disable use of the Boehm garbage collector by configuring with ./configure
--disable-gc. For a list of other configuration options, say ./configure --help. For
example, under MacOS X, one can tell configure to use the clang compilers and look for
header files and libraries in nonstandard locations:

./configure CC=clang CXX=clang++ CPPFLAGS=-I/opt/local/include LDFLAGS=-L/opt/local/lib

If you are compiling Asymptote with gcc, you will need a relatively recent version (e.g.
3.4.4 or later). For full interactive functionality, you will need version 4.3 or later of the GNU
readline library. The file gcc3.3.2curses.patch in the patches directory can be used
to patch the broken curses.h header file (or a local copy thereof in the current directory) on
some AIX and IRIX systems.

The FFTW library is only required if you want Asymptote to be able to take Fourier
transforms of data (say, to compute an audio power spectrum). The GSL library is only
required if you require the special functions that it supports.

If you don’t want to install Asymptote system wide, just make sure the compiled binary
asy and GUI script xasy are in your path and set the configuration variable dir to point
to the directory base (in the top level directory of the Asymptote source code).

2.7 Editing modes

Users of emacs can edit Asymptote code with the mode asy-mode, after enabling it by
putting the following lines in their .emacs initialization file, replacing ASYDIR with the
location of the Asymptote system directory (by default, /usr/local/share/asymptote or
C:\Program Files\Asymptote under MSDOS):

(add-to-1list 'load-path "ASYDIR")

(autoload 'asy-mode "asy-mode.el" "Asymptote major mode." t)

(autoload 'lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload 'asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list 'auto-mode-alist '("\\.asy$" . asy-mode))

Particularly useful key bindings in this mode are C-c C-c, which compiles and displays the
current buffer, and the key binding C-c ?, which shows the available function prototypes
for the command at the cursor. For full functionality you should also install the Apache
Software Foundation package two-mode-mode:

https://www.dedasys.com/freesoftware/files/two-mode-mode.el

Once installed, you can use the hybrid mode lasy-mode to edit a LaTeX file containing
embedded Asymptote code (see Chapter 7 [LaTeX usage|, page 86). This mode can be en-
abled within latex-mode with the key sequence M-x lasy-mode <RET>. On UNIX systems,
additional keywords will be generated from all asy files in the space-separated list of direc-
tories specified by the environment variable ASYMPTOTE_SITEDIR. Further documentation
of asy-mode is available within emacs by pressing the sequence keys C-h f asy-mode <RET>.

https://asymptote.sourceforge.io/asymptote.pdf
https://www.dedasys.com/freesoftware/files/two-mode-mode.el

Chapter 2: Installation 8

Fans of vim can customize vim for Asymptote with
cp /usr/local/share/asymptote/asy.vim ~/.vim/syntax/asy.vim
and add the following to their ~/.vimrc file:

augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
If any of these directories or files don’t exist, just create them. To set vim up to run the
current asymptote script using :make just add to ~/.vim/ftplugin/asy.vim:

setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m

Syntax highlighting support for the KDE editor Kate can be enabled by running
asy-kate.sh in the /usr/local/share/asymptote directory and putting the generated
asymptote.xml file in “/.1local/share/org.kde.syntax-highlighting/syntax/.

2.8 Git

The following commands are needed to install the latest development version of Asymptote
using git:

git clone https://github.com/vectorgraphics/asymptote

cd asymptote
./autogen.sh
./configure
make all
make install

To compile without optimization, use the command make CFLAGS=-g. On Ubuntu systems,
you may need to first install the required dependencies:

apt-get build-dep asymptote

2.9 Uninstall

To uninstall a Linux x86_64 binary distribution, use the commands

tar -zxvf asymptote-x.xx.x86_64.tgz | xargs --replace=}% rm /%
texhash

To uninstall all Asymptote files installed from a source distribution, use the command

make uninstall

3 Tutorial

A concise introduction to Asymptote is given here. For a more thorough introduction, see
the excellent Asymptote tutorial written by Charles Staats:

https://asymptote.sourceforge.io/asymptote_tutorial.pdf

Another Asymptote tutorial is available as a wiki, with images rendered by an online
Asymptote engine:
https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)

3.1 Drawing in batch mode

To draw a line from coordinate (0,0) to coordinate (100,100), create a text file test.asy
containing

draw((0,0)--(100,100));

Then execute the command

asy -V test

Alternatively, MSDOS users can drag and drop test.asy onto the Desktop asy icon (or make
Asymptote the default application for the extension asy).

This method, known as batch mode, outputs a PostScript file test.eps. If you prefer PDF
output, use the command line

asy -V -f pdf test
In either case, the -V option opens up a viewer window so you can immediately view the
result:

Here, the —- connector joins the two points (0,0) and (100,100) with a line segment.

3.2 Drawing in interactive mode

Another method is interactive mode, where Asymptote reads individual commands as they
are entered by the user. To try this out, enter Asymptote’s interactive mode by clicking on
the Asymptote icon or typing the command asy. Then type

draw((0,0)--(100,100));

followed by Enter, to obtain the above image. At this point you can type further draw
commands, which will be added to the displayed figure, erase to clear the canvas,

input test;

https://asymptote.sourceforge.io/asymptote_tutorial.pdf
https://www.artofproblemsolving.com/wiki/?title=Asymptote_(Vector_Graphics_Language)

Chapter 3: Tutorial 10

to execute all of the commands contained in the file test.asy, or quit to exit interactive
mode. You can use the arrow keys in interactive mode to edit previous lines. The tab key
will automatically complete unambiguous words; otherwise, hitting tab again will show the
possible choices. Further commands specific to interactive mode are described in Chapter 10
[Interactive mode], page 173.

3.3 Figure size

In Asymptote, coordinates like (0,0) and (100,100), called pairs, are expressed in
PostScript "big points" (1 bp = 1/72 inch) and the default line width is 0.5bp. However,
it is often inconvenient to work directly in PostScript coordinates. The next example
produces identical output to the previous example, by scaling the line (0,0)--(1,1) to fit
a rectangle of width 100.5 bp and height 100.5 bp (the extra 0.5bp accounts for the line
width):

size(100.5,100.5);
draw((0,0)--(1,1));

One can also specify the size in pt (1 pt = 1/72.27 inch), cm, mm, or inches. T'wo nonzero
size arguments (or a single size argument) restrict the size in both directions, preserving
the aspect ratio. If 0 is given as a size argument, no restriction is made in that direction;
the overall scaling will be determined by the other direction (see [size]|, page 48):

size(0,100.5);
draw((0,0)--(2,1) ,Arrow);

To connect several points and create a cyclic path, use the cycle keyword:

size(3cm);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

Chapter 3: Tutorial 11

For convenience, the path (0,0)--(1,0)--(1,1)--(0,1)--cycle may be replaced with
the predefined variable unitsquare, or equivalently, box ((0,0),(1,1)).

To make the user coordinates represent multiples of exactly 1cm:

unitsize(lcm);
draw(unitsquare) ;

3.4 Labels

Adding labels is easy in Asymptote; one specifies the label as a double-quoted LaTeX string,
a coordinate, and an optional alignment direction:

size(3cm);
draw(unitsquare) ;
label ("A", (0,0),SW);
label("B", (1,0),SE);
label("C", (1,1),NE);
label("D", (0,1) ,NW);

A B

Asymptote uses the standard compass directions E=(1,0), N=(0,1), NE=unit (N+E), and
ENE=unit (E+NE), etc., which along with the directions up, down, right, and left are
defined as pairs in the Asymptote base module plain (a user who has a local variable
named E may access the compass direction E by prefixing it with the name of the module
where it is defined: plain.E).

3.5 Paths

This example draws a path that approximates a quarter circle, terminated with an arrow-
head:

size(100,0);
draw((1,0){up}..{1left}(0,1),Arrow);

Chapter 3: Tutorial 12

Here the directions up and left in braces specify the outgoing and incoming directions at
the points (1,0) and (0,1), respectively.

In general, a path is specified as a list of points (or other paths) interconnected with —-,
which denotes a straight line segment, or .., which denotes a cubic spline (see Chapter 5
[Bezier curves|, page 22). Specifying a final ..cycle creates a cyclic path that connects
smoothly back to the initial node, as in this approximation (accurate to within 0.06%) of a
unit circle:

path unitcircle=E..N..W..S..cycle;

An Asymptote path, being connected, is equivalent to a PostScript subpath. The =~ bi-
nary operator, which requests that the pen be moved (without drawing or affecting endpoint
curvatures) from the final point of the left-hand path to the initial point of the right-hand
path, may be used to group several Asymptote paths into a path[] array (equivalent to a
PostScript path):

size(0,100);

path unitcircle=E..N..W..S..cycle;

path g=scale(2)*unitcircle;
filldraw(unitcircle”"g,evenodd+yellow,black) ;

The PostScript even-odd fill rule here specifies that only the region bounded between the
two unit circles is filled (see [fillrule], page 42). In this example, the same effect can be
achieved by using the default zero winding number fill rule, if one is careful to alternate the
orientation of the paths:

filldraw(unitcircle” "reverse(g),yellow,black) ;

The =~ operator is used by the box(triple, triple) function in the module three to
construct the edges of a cube unitbox without retracing steps (see Section 8.28 [three],
page 134):

import three;

Chapter 3: Tutorial 13

currentprojection=orthographic(5,4,2,center=true);

size(5cm) ;
size3(3cm,5cm,8cm) ;

draw(unitbox) ;
dot (unitbox,red);

label("0", (0,0,0) ,NW);

label("(1,0,0)",(1,0,0),3);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),Z);

(0,0,1)

| =

(170 (0,1,0)

See section Section 8.26 [graph|, page 99, (or the online Asymptote gallery and exter-
nal links posted at https://asymptote.sourceforge.io) for further examples, including
two-dimensional and interactive three-dimensional scientific graphs. Additional examples
have been posted by Philippe Ivaldi at https://web.archive.org/web/20201130113133/
http://www.piprime.fr/asymptote.

https://asymptote.sourceforge.io/gallery
https://asymptote.sourceforge.io
https://web.archive.org/web/20201130113133/http://www.piprime.fr/asymptote
https://web.archive.org/web/20201130113133/http://www.piprime.fr/asymptote

14

4 Drawing commands

All of Asymptote’s graphical capabilities are based on four primitive commands. The three
PostScript drawing commands draw, £il1l, and clip add objects to a picture in the order
in which they are executed, with the most recently drawn object appearing on top. The
labeling command label can be used to add text labels and external EPS images, which
will appear on top of the PostScript objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing objects on a picture,
the picture can be output with the shipout function (see [shipout], page 49).

If you wish to draw PostScript objects on top of labels (or verbatim tex commands;
see [tex], page 53), the layer command may be used to start a new PostScript/LaTeX
layer:

void layer(picture pic=currentpicture);

The layer function gives one full control over the order in which objects are drawn.
Layers are drawn sequentially, with the most recent layer appearing on top. Within each
layer, labels, images, and verbatim tex commands are always drawn after the PostScript
objects in that layer.

A page break can be generated with the command
void newpage(picture pic=currentpicture);

While some of these drawing commands take many options, they all have sensible default
values (for example, the picture argument defaults to currentpicture).

4.1 draw

void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker) ;

Draw the path g on the picture pic using pen p for drawing, with optional drawing
attributes (Label L, explicit label alignment align, arrows and bars arrow and bar, margins
margin, legend, and markers marker). Only one parameter, the path, is required. For
convenience, the arguments arrow and bar may be specified in either order. The argument
legend is a Label to use in constructing an optional legend entry.

Bars are useful for indicating dimensions. The possible values of bar are None, BeginBar,
EndBar (or equivalently Bar), and Bars (which draws a bar at both ends of the path). Each
of these bar specifiers (except for None) will accept an optional real argument that denotes
the length of the bar in PostScript coordinates. The default bar length is barsize (pen).

The possible values of arrow are None, Blank (which draws no arrows or path),
BeginArrow, MidArrow, EndArrow (or equivalently Arrow), and Arrows (which draws an
arrow at both ends of the path). All of the arrow specifiers except for None and Blank may
be given the optional arguments arrowhead arrowhead (one of the predefined arrowhead
styles DefaultHead, SimpleHead, HookHead, TeXHead), real size (arrowhead size in
PostScript coordinates), real angle (arrowhead angle in degrees), filltype filltype
(one of FillDraw, Fill, NoFill, UnFill, Draw) and (except for MidArrow and Arrows)
a real position (in the sense of point(path p, real t)) along the path where the tip

Chapter 4: Drawing commands 15

of the arrow should be placed. The default arrowhead size when drawn with a pen p is
arrowsize(p). There are also arrow versions with slightly modified default values of size
and angle suitable for curved arrows: BeginArcArrow, EndArcArrow (or equivalently
ArcArrow), MidArcArrow, and ArcArrows.

Margins can be used to shrink the visible portion of a path by labelmargin(p)
to avoid overlap with other drawn objects. Typical values of margin are NoMargin,
BeginMargin, EndMargin (or equivalently Margin), and Margins (which leaves a margin
at both ends of the path). One may use Margin(real begin, real end=begin) to
specify the size of the beginning and ending margin, respectively, in multiples of
the units labelmargin(p) used for aligning labels. Alternatively, BeginPenMargin,
EndPenMargin (or equivalently PenMargin), PenMargins, PenMargin(real begin, real
end=begin) specify a margin in units of the pen line width, taking account of the pen line
width when drawing the path or arrow. For example, use DotMargin, an abbreviation
for PenMargin(-0.5*dotfactor,0.5*dotfactor), to draw from the usual beginning
point just up to the boundary of an end dot of width dotfactor*linewidth(p). The
qualifiers BeginDotMargin, EndDotMargin, and DotMargins work similarly. The qualifier
TrueMargin(real begin, real end=begin) allows one to specify a margin directly in
PostScript units, independent of the pen line width.

The use of arrows, bars, and margins is illustrated by the examples Pythagoras.asy
and sqrtx01.asy.

The legend for a picture pic can be fit and aligned to a frame with the routine:

frame legend(picture pic=currentpicture, int perline=1,
real xmargin=legendmargin, real ymargin=xmargin,
real linelength=legendlinelength,
real hskip=legendhskip, real vskip=legendvskip,
real maxwidth=0, real maxheight=0,
bool hstretch=false, bool vstretch=false, pen p=currentpen);

Here xmargin and ymargin specify the surrounding x and y margins, perline specifies
the number of entries per line (default 1; 0 means choose this number automatically),
linelength specifies the length of the path lines, hskip and vskip specify the line skip
(as a multiple of the legend entry size), maxwidth and maxheight specify optional upper
limits on the width and height of the resulting legend (0 means unlimited), hstretch and
vstretch allow the legend to stretch horizontally or vertically, and p specifies the pen used
to draw the bounding box. The legend frame can then be added and aligned about a point
on a picture dest using add or attach (see [add about], page 51).

To draw a dot, simply draw a path containing a single point. The dot command defined
in the module plain draws a dot having a diameter equal to an explicit pen line width or
the default line width magnified by dotfactor (6 by default), using the specified filltype
(see [filltype], page 50) or dotfilltype (Fill by default):

void dot(frame f, pair z, pen p=currentpen, filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, pair z, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen, filltype filltype=dotfilltype) ;
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,

https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy
https://asymptote.sourceforge.io/gallery/3Dgraphs/sqrtx01.html
https://asymptote.sourceforge.io/gallery/sqrtx01.asy

Chapter 4: Drawing commands 16

align align=NoAlign, string format=defaultformat, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, path[] g, pen p=currentpen,
filltype filltype=dotfilltype);
void dot(picture pic=currentpicture, Label L, pen p=currentpen,
filltype filltype=dotfilltype);

If the variable Label is given as the Label argument to the third routine, the format
argument will be used to format a string based on the dot location (here defaultformat is
"$%.4g$"). The fourth routine draws a dot at every point of a pair array z. One can also
draw a dot at every node of a path:
void dot(picture pic=currentpicture, Label[] L=new Labell[],

explicit path g, align align=RightSide, string format=defaultformat,
pen p=currentpen, filltype filltype=dotfilltype);

See [pathmarkers], page 109, and Section 8.9 [markers|, page 93, for more general meth-
ods for marking path nodes.

To draw a fixed-sized object (in PostScript coordinates) about the user coordinate
origin, use the routine
void draw(pair origin, picture pic=currentpicture, Label L="", path g,

align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker) ;

4.2 fill

void fill(picture pic=currentpicture, path g, pen p=currentpen);

Fill the interior region bounded by the cyclic path g on the picture pic, using the pen
P

There is also a convenient filldraw command, which fills the path and then draws in
the boundary. One can specify separate pens for each operation:

void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen) ;

This fixed-size version of £ill allows one to fill an object described in PostScript
coordinates about the user coordinate origin:

void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
This is just a convenient abbreviation for the commands:
picture opic;
fill(opic,g,p);
add(pic,opic,origin);
The routine
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
fills the region exterior to the path g, out to the current boundary of picture pic.

Lattice gradient shading varying smoothly over a two-dimensional array of pens p, using
fill rule fillrule, can be produced with

void latticeshade(picture pic=currentpicture, path g, bool stroke=false,

Chapter 4: Drawing commands 17

pen fillrule=currentpen, pen[][] p)

If stroke=true, the region filled is the same as the region that would be drawn by
draw(pic,g,zerowinding); in this case the path g need not be cyclic. The pens in p
must belong to the same color space. One can use the functions rgb(pen) or cmyk(pen) to
promote pens to a higher color space, as illustrated in the example file latticeshading.asy.

Axial gradient shading varying smoothly from pena to penb in the direction of the line
segment a--b can be achieved with

void axialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, bool extenda=true,
pen penb, pair b, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the axis endpoints a and b. An example of axial shading is provided in the example
file axialshade.asy.

Radial gradient shading varying smoothly from pena on the circle with center a and
radius ra to penb on the circle with center b and radius rb is similar:

void radialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, real ra, bool extenda=true,
pen penb, pair b, real rb, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the radii a and b. Illustrations of radial shading are provided in the example files
shade.asy, ring.asy, and shadestroke.asy.

Gouraud shading using fill rule fillrule and the vertex colors in the pen array p on a
triangular lattice defined by the vertices z and edge flags edges is implemented with

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, penl[] p, pair[] z,
int[] edges);

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, int[] edges);

In the second form, the elements of z are taken to be successive nodes of path g. The pens
in p must belong to the same color space. Illustrations of Gouraud shading are provided
in the example file Gouraud.asy. The edge flags used in Gouraud shading are documented
here:

https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/
TN5600.SmoothShading.pdf
Tensor product shading using clipping path g, fill rule fillrule on patches bounded by
the n cyclic paths of length 4 in path array b, using the vertex colors specified in the n x 4
pen array p and internal control points in the n x 4 array z, is implemented with
void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, pen[][] p, path[] b=g,
pair[]1[] z=new pair([][]);
If the array z is empty, Coons shading, in which the color control points are calculated
automatically, is used. The pens in p must belong to the same color space. A simpler
interface for the case of a single patch (n = 1) is also available:

void tensorshade(picture pic=currentpicture, path g, bool stroke=false,

https://asymptote.sourceforge.io/gallery/latticeshading.svg
https://asymptote.sourceforge.io/gallery/latticeshading.asy
https://asymptote.sourceforge.io/gallery/axialshade.svg
https://asymptote.sourceforge.io/gallery/axialshade.asy
https://asymptote.sourceforge.io/gallery/shade.svg
https://asymptote.sourceforge.io/gallery/shade.asy
https://asymptote.sourceforge.io/gallery/PDFs/ring.pdf
https://asymptote.sourceforge.io/gallery/PDFs/ring.asy
https://asymptote.sourceforge.io/gallery/PDFs/shadestroke.pdf
https://asymptote.sourceforge.io/gallery/PDFs/shadestroke.asy
https://asymptote.sourceforge.io/gallery/PDFs/Gouraud.pdf
https://asymptote.sourceforge.io/gallery/PDFs/Gouraud.asy
https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/TN5600.SmoothShading.pdf
https://www.adobe.com/content/dam/acom/en/devnet/postscript/pdfs/TN5600.SmoothShading.pdf

Chapter 4: Drawing commands 18

pen fillrule=currentpen, pen[] p, path b=g,
pair[] z=new pair[l);

One can also smoothly shade the regions between consecutive paths of a sequence using
a given array of pens:

void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
penl] p);

Illustrations of tensor product and Coons shading are provided in the example files

tensor.asy, Coons.asy, BezierPatch.asy, and rainbow.asy.

More general shading possibilities are available using TEX engines that produce PDF
output (see [texengines|, page 171): the routine

void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, string shader);

shades on picture pic the interior of path g according to fill rule fillrule using the
PostScript calculator routine specified by the string shader; this routine takes 2 argu-
ments, each in [0,1], and returns colors(fillrule).length color components. Function
shading is illustrated in the example functionshading.asy.

The following routine uses evenodd clipping together with the =~ operator to unfill a
region:

void unfill(picture pic=currentpicture, path g);

4.3 clip

void clip(picture pic=currentpicture, path g, stroke=false,
pen fillrule=currentpen);

Clip the current contents of picture pic to the region bounded by the path g, using fill
rule fillrule (see [fillrule], page 42). If stroke=true, the clipped portion is the same as
the region that would be drawn with draw(pic,g,zerowinding); in this case the path g
need not be cyclic. While clipping has no notion of depth (it transcends layers and even
pages), one can localize clipping to a temporary picture, which can then be added to pic.
For an illustration of picture clipping, see the first example in Chapter 7 [LaTeX usage],
page 86.

4.4 label

void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=currentpen, filltype filltype=NoFill)
Draw Label L on picture pic using pen p. If align is NoAlign, the label will be centered
at user coordinate position; otherwise it will be aligned in the direction of align and
displaced from position by the PostScript offset align*labelmargin(p). The constant
Align can be used to align the bottom-left corner of the label at position. The Label L
can either be a string or the structure obtained by calling one of the functions

Label Label(string s="", pair position, align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);

https://asymptote.sourceforge.io/gallery/PDFs/tensor.pdf
https://asymptote.sourceforge.io/gallery/PDFs/tensor.asy
https://asymptote.sourceforge.io/gallery/PDFs/Coons.pdf
https://asymptote.sourceforge.io/gallery/PDFs/Coons.asy
https://asymptote.sourceforge.io/gallery/3Dwebgl/BezierPatch.html
https://asymptote.sourceforge.io/gallery/3Dwebgl/BezierPatch.asy
https://asymptote.sourceforge.io/gallery/PDFs/rainbow.pdf
https://asymptote.sourceforge.io/gallery/PDFs/rainbow.asy
https://asymptote.sourceforge.io/gallery/PDFs/functionshading.pdf
https://asymptote.sourceforge.io/gallery/PDFs/functionshading.asy

Chapter 4: Drawing commands 19

Label Label(Label L, pair position, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);

The text of a Label can be scaled, slanted, rotated, or shifted by multiplying it on
the left by an affine transform (see Section 6.4 [Transforms|, page 46). For example,
rotate(45)*xscale(2)*L first scales L in the z direction and then rotates it counter-
clockwise by 45 degrees. The final position of a Label can also be shifted by a PostScript
coordinate translation: shift(10,0)*L. An explicit pen specified within the Label over-
rides other pen arguments. The embed argument determines how the Label should transform
with the embedding picture:

Shift only shift with embedding picture;
Rotate only shift and rotate with embedding picture (default);

Rotate(pair z)
rotate with (picture-transformed) vector z.

Slant only shift, rotate, slant, and reflect with embedding picture;
Scale shift, rotate, slant, reflect, and scale with embedding picture.

To add a label to a path, use

void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=currentpen, filltype filltype=NoFill);

By default the label will be positioned at the midpoint of the path. An alternative
label position (in the sense of point(path p, real t)) may be specified as a real value
for position in constructing the Label. The position Relative(real) specifies a location
relative to the total arclength of the path. These convenient abbreviations are predefined:

position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(l);

Path labels are aligned in the direction align, which may be specified as an absolute
compass direction (pair) or a direction Relative(pair) measured relative to a north axis
in the local direction of the path. For convenience LeftSide, Center, and RightSide are
defined as Relative (W), Relative((0,0)), and Relative(E), respectively. Multiplying
LeftSide and RightSide on the left by a real scaling factor will move the label further
away from or closer to the path.

A label with a fixed-size arrow of length arrowlength pointing to b from direction dir
can be produced with the routine

void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin) ;
If no alignment is specified (either in the Label or as an explicit argument), the optional
Label will be aligned in the direction dir, using margin margin.
The function string graphic(string name, string options="") returns a string that
can be used to include an encapsulated PostScript (EPS) file. Here, name is the name

Chapter 4: Drawing commands 20

of the file to include and options is a string containing a comma-separated list of op-
tional bounding box (bb=11x 11y urx ury), width (width=value), height (height=value),
rotation (angle=value), scaling (scale=factor), clipping (clip=bool), and draft mode
(draft=bool) parameters. The layer () function can be used to force future objects to be
drawn on top of the included image:

label(graphic("file.eps","width=1cm"), (0,0) ,NE);
layer();

The string baseline(string s, string template="\strut") function can be used to
enlarge the bounding box of labels to match a given template, so that their baselines will
be typeset on a horizontal line. See Pythagoras.asy for an example.

One can prevent labels from overwriting one another with the overwrite pen attribute
(see [overwrite], page 46).

The structure object defined in plain_Label.asy allows Labels and frames to be
treated in a uniform manner. A group of objects may be packed together into single frame
with the routine

frame pack(pair align=2S ... object inset[]);

To draw or fill a box (or ellipse or other path) around a Label and return the bounding
object, use one of the routines

object draw(picture pic=currentpicture, Label L, envelope e,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

object draw(picture pic=currentpicture, Label L, envelope e, pair position,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

Here envelope is a boundary-drawing routine such as box, roundbox, or ellipse defined
in plain_boxes.asy (see [envelope|, page 48).

The function path[] texpath(Label L) returns the path array that TEX would fill to
draw the Label L.

The string minipage(string s, width=100pt) function can be used to format string
s into a paragraph of width width. This example uses minipage, clip, and graphic to
produce a CD label:

https://asymptote.sourceforge.io/gallery/Pythagoras.svg
https://asymptote.sourceforge.io/gallery/Pythagoras.asy

Chapter 4: Drawing commands 21

size(11.7cm,11.7cm);
asy(nativeformat(),"logo");

fill(unitcircle”"(scale(2/11.7)*unitcircle),

evenodd+rgb(124/255,205/255,124/255)) ;
label(scale(1l.1)*minipage(

"\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\

\smallskip
\small The Vector Graphics Language}\\
\smallskip
\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}
https://asymptote.sourceforge.io\\
" 8cm), (0,0.6));
label(graphic("logo","height=7cm"), (0,-0.22));
clip(unitcircle”"(scale(2/11.7)*unitcircle),evenodd) ;

22

5 Bezier curves

Each interior node of a cubic spline may be given a direction prefix or suffix {dir}: the
direction of the pair dir specifies the direction of the incoming or outgoing tangent, respec-
tively, to the curve at that node. Exterior nodes may be given direction specifiers only on
their interior side.

A cubic spline between the node zy, with postcontrol point ¢y, and the node z;, with
precontrol point ¢, is computed as the Bezier curve

(1 —1)320 + 3t(1 — t)%co + 3t*(1 — t)ey + 32, 0<t < 1.

As illustrated in the diagram below, the third-order midpoint (ms) constructed from
two endpoints zg and z; and two control points ¢y and ¢y, is the point corresponding to
t = 1/2 on the Bezier curve formed by the quadruple (zg, ¢o, ¢1, z1). This allows one to
recursively construct the desired curve, by using the newly extracted third-order midpoint
as an endpoint and the respective second- and first-order midpoints as control points:

Here mg, my; and ms, are the first-order midpoints, ms; and my4 are the second-order
midpoints, and ms is the third-order midpoint. The curve is then constructed by recursively
applying the algorithm to (zo, mo, ms, ms) and (ms, my, ma, 21).

In fact, an analogous property holds for points located at any fraction ¢ in [0, 1] of each
segment, not just for midpoints (¢t = 1/2).

The Bezier curve constructed in this manner has the following properties:

e It is entirely contained in the convex hull of the given four points.
e [t starts heading from the first endpoint to the first control point and finishes heading
from the second control point to the second endpoint.

The user can specify explicit control points between two nodes like this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

However, it is usually more convenient to just use the .. operator, which tells Asymptote
to choose its own control points using the algorithms described in Donald Knuth’s mono-
graph, The MetaFontbook, Chapter 14. The user can still customize the guide (or path)
by specifying direction, tension, and curl